o AD=AO71 050 GENERAL RESEARCH CORP SANTA BARBARA CA SYSTEMS TECHNO=-ETC F/¢ 9/2
AN EXPERIMENTAL EVALUATION OF SOFTWARE TESTING.(U)
MAY 79 C GANNON:» R N MEESON: N 8 BROOKS F&9620-78-C~0103

s

E

=2 12
=ik
. 4
m“ T ="
o ll22
2 flis mee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

1T

CR-1-854

An Experimental Evaluation of
Software Testing

Final Report

by
C. Gannon
R. N. Meeson

N. B. Brooks

May 1979

SYSTHAS TECHNOLOGIES GROUP

[GENERAL 3
R ES EARCH CORPORATION

A SUBSIDIARY OF FLOW GENERAL INC.
P.O. Box 6770, Santa Barbara, California 93111

BDC FiLE cory

Sponsored by
Alr Force Office of Scientific Research
[Bolling Air Force Base

Washington, D.C.
Under Contract F49620-78-C-0103

Approved for public release;
distribution unlimited.

In addition to approval by the Project Leader

and Department Head, General Research Corporation
reports are subject to independent review by

a staff member not connected with the project.
This report was reviewed by T. Plambeck.

Sponsored. by ° i :
Air Force Office of Scientific Research
Bolling Air Force Base’
Washington, D.C.

Under Contract F49620-78-C-0103

bed el bl eed il el el bl el Geeed el el b bead bmed el e el L

SECURITY CLAMI‘QA/MJJIPA&dm Data Entered)

— REPORT DOCUMENTATION PAGE . READ INSTRUCTIORS

(

o

\

LA

» BEFORE COMPLETING FORM

|. REPOR1

! MB 2. GOVT ACCESSION-NO| %-BEQE,EN_LWS
AFe»sn 9— 9) 733 (IR = O {—

4. T|TLE (and Subl“

AN EXPERIMENTAL EVALUATION OF §OFTWARE TESTING ,
- Ed = /

A X

S. TVPE OF REPORT & PERIOD COVERED

. 17. AUTHOR

/%)

ol

C./GANNON, R .), [Mee

— N B, [Brooks |
9. PERFORMING ORGANIZATION NAME 7 10.

General Research Corporation </

P RAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
N\

I

Air Force Office of Scientific Research/NM (1
Bolling AFB,Washington, D.C. 20332

13. NUMBER OF P
106

fﬁf

P.0. Box 6770

| Santa Barbara, CA 93111 61102F | 23g4/a2] |
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE . P

4. MONITORING AGENCY NAME & ADDRESS(If dllhunl from Comrollln. Ollicc) 1S. SECURITY CLASS. (of this report)

J /f‘ | UNCLASSIFIED

1Sa. DECL ASSIFICATION/DOWNGRADING

SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
17. DISTRIBUTION ST, AENT (of '+ abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY TES

9. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Path Testing, C overage, Static Analysis, Tracing, Branch, Test Tool.

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

This report describes the procedures and results of a series of controlled
experiments desinged to gather data on actual test tool usage. The primary

goal of the experiments was to evaluate the testing techniques of path (branch)
coverage testing and static analysis. The evaluation was based on the types of
errors detected by these techniques and on a comparison of performance with
respect tdO classical techniques of debug printout and execution tracing. A
test program was seeded with errors for the experiments, The error-seeding

process is described in detail, continued

DD , 5355 1473

”

uncrasstFIED /[/| 11|

i

SECURITY CLASSIFICATION OF THIS PAGE ('hm Date lnlon‘

.

S

= -

N o i\

AN A A ek haikd

SECURITY CLASSIFICATION OF THIS PAGE(When Data Enterod)
Bl

20. Abstract (continued) - . g b
/

To date, in spite of much speculation, no computer-aided testing
techniques for software have been eyaluated in a controlled testing environment,

This report discusses and presents the results of a series of such tests,

The techniques evaluated are path (branch) coverage testing and static
analysis. The basic approach was to prepare programs for testing by seeding
them with errors whose type and frequency are typical of new software at the
integration- or system-level of testing.

The experiments were conducted in three phases, The first used eight
small programs from a popular programming manual, the second and third used
a 5000-1line FORTRAN program used to simulate ballistic-missile defense
engagements. For the most part, both the path testing and static analysis used
the SQLAB tool, with the techniques used singly and in combination, In Phase
1, the CAVE system's static analysis capabilities were also used, In Phase
3, the techniques were compared with the techniques of intermediate-value
printout and control-flow tracing.

Of the two techniques, path testing was more effective overall, Its
lack of localized error messages was a drawback, but ‘the enhancement to the
inspection process was significant, doubling the usual inspection yield. Static
analysis, while not as powerful, at times detected errors path testing did not
find. It is economical, and its diagnostic message at the error's statement
location is a distinct advantage.

The inescapable conclusion remains, however, that fully automated computer
aided testing is not possible at present, Further, the errors that are not de=
tected are generally considered difficult to locate by conventional techniques,
In particular, the missing ingredient seems to be a specification of the legal
path sequences which a program should be allowed to travel, The error-seeding
process is recommended as a measure of testing thoroughness,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEWhen Data Entared)

e — ——

——

CR-1-854

AN EXPERIMENTAL EVALUATION OF
SOFTWARE TESTING

Final Report

By

C. Gannon
R.N. Meeson
N.B. Brooks

MAY 1979

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC

This teac cal t 1} en reviewed and is
approvos elz2ise IAW Ard 130-12 (7b
Distribution is uulimited.)
A. D. BLOSE

Technical Information Officer

ABSTRACT

To date, in spite of much speculation, no computer-aided testing
techniques for software have been evaluated in a controlled testing
environment. This report discusses and presents the results of a series
of such tests.

N

The techniques evaluated are path (branch) coverage testing and
static analysis. The basic approach was to prepare programs for testing
by seeding them with errors whose type and fréquency are typical of new

software at the integration- or system-level of testing.

The experiments were conducted in three phases. The first used
eight small programs from a popular programming manual, the second and
third used a 5000-1line FORTRAN program used to simulate ballistic-missile
defense engagements. For the most part, both the path testing and static
analysis used the SQLAB tool, with the techniques used singly and in com-
bination. In Phase 1, the DAVE system's static analysis capabilities

were also used. In Phase 3, the techniques were compared with the tech-

niques of intermediate-value printout and control-flow tracing.

Of the two techniques, path testing was effective overall. Its

lack of localized error messages was a wback, but the enhancement to
the inspection process was sig cant, doubling the usual inspection
yield. Static analysis ile not as powerful, at times detected errors
path testing di t find. It is economical, and its diagnostic message

at the T's statement location is a distinct advantage.

The inescapable conclusion remains, however, that fully automated
computer-aided testing is not possible at present. Further, the errors
that are not detected are generally considered difficult to locate by
conventional techniques.én particular, the missing ingredient seems to

be a specification of the legal path sequences which a program should
be allowed to travel. The error-seeding process is recommended as a

measure of testing thoroughness.

i1

CONTENTS
SECTION PAGE
ABSTRACT i
ACKNOWLEDGMENT vii
1 INTRODUCTION 1-1
1.1 Background 1-1
1.2 Purpose of Experiments 1-4
1.3 Major Conclusions 1-8
2 PRELIMINARY ANALYSIS 92-1.
3 TEST OBJECT 3-1
3.1 Modification of the Test Object 3]
3.2 Expanded Data Set 3-3
4 ERROR SEEDING 4-1
4.1 Error Types and Frequency 4-1
4.2 Error Generation 4-7
5 SINGLE-ERROR EXPERIMENT 5-1
5.1 Description of Experiment 5-1
5.2 Path Testing Phase 5-1
5.3 Static Analysis Phase 5-8
6 MULTI-ERROR EXPERIMENT 6-1
6.1 Description of the Multi-Error Experiment 6-1
6.2 Results of the Multi-Error Experiment 6-3
7 CONCLUSIONS 7-1
7.1 Effectiveness for Error Detection 7-3
7.2 Effectiveness for Verification 7-4
7.3 Value of Error Seeding =3

iii

L

CONTENTS (cont.)

APPENDIX PAGE
A SMALL PROGRAMS FOR PRELIMINARY ANALYSIS A-1
B CHRONOLOGICAL LIST OF SUBMITTED PAPERS B-1
(o PERSONNEL ASSOCIATED WITH THE PROJECT c-1

BIBLIOGRAPHY D-1

iv

S s e

R G e

4.1
4.2
4.3
4.4
4.5
5.k
5.2

5.3
5.4

6.1
6.2
6.3

6.4

6.5

ILLUSTRATIONS

Page
Sample Program Listing from SQLAB 1-9
Sample Static Analysis Report from SQLAB 1-10
Path Coverage Report 3-4
SQLAB Wrap-up Report 3-7
SQLAB Invocation Bands Report 3-8
Form of Software Property/Module Matrix 4-12
Candidate Error Site Matrix 4-12
Excerpt from Candidate Error Site List 4-14
Sample Error Packet 4-17
Selected Entries from Results List 4-i9
Error Frequency in Major Categories 5-2
Path Testing Frequency of Detected Errors by
Category 5-6
Path Testing: Average Time Expended per Error S<7
Static Analysis: Frequency of Detected Errors
by Category 5-9
Error Frequency in Major Categories 6-2
Errors in Delivered Software 6-4
Categories of Errors and Method of Detection
in the Multi-Error Experiment 6-7
Order of Error Discovery in Multi-Error
Experiment 6-8
Multi-Error Experiment Engineering Time
Resources 6-13

2.2
2.3
2.4
3.1

3.2

4.1
4.2
4.3

4.4
4.5
4.6
4.7
5.1
5.2
6.1

TABLES

Theoretical Results of Path Testing
Set of Experiments

Summary of Error Category Detection

Error Classification and Detection for Programs

from The Elements of Programming Style

Static Analysis Followed by Path Testing
Path Testing Alone
DAVE System Testing Alone

Path Coverage of Test Object Using Initial
Data Set

Path Coverage of Selected Modules Using
Expanded Data Set

Error Types Used in Experiment
Error Frequency in Major Categories

Relationships Between Software Properties
and Error Types

Error Run Results by Error Type
Errors Classified

Distribution of Errors in Modules
Category 3 Errors (Site Executed)
Error Frequency in Major Categories
Error Detection for Each Error Type

Multiple Error Experiment--Errors Found and
Resources Expended

vi

Page

1-3
1-6
1-11

3-5

3-9
4-3
4-6

4-10
4-21
4-22
4-23
4-24
5-3

5-5

6-6

ACKNOWLEDGEMENT

This project was sponsored by the Air Force Office of Scientific
Research, Contract Number, F49620-78-C-0103, under program management
of Lt. Col. George W. McKemie. Additional research hLas been encouraged
resulting in a follow-on effort that applies adaptive search tech-

niques to software testing.

Participants in the project were C. Gannon, principal investigator,

D. Andrews, J. P. Benson, N. B. Brooks, R. N. Meeson, and S. H. Saib.
We also appreciate the interest in this project of J. B. Goodenough

of SofTech Inc., F. S. LaMonica of Rome Air Development Center, and

E. F. Miller, Jr. of Software Research Associates.

vii

»

1 INTRODUCTION

This report describes the procedures and results of a series of
controlled experiments designed to gather data on actual test tool usage.
The primary goal of these experiments was to evaluate and compare two
automated testing techniques, path (branch) coverage testing and static
analysis, by determining the types of errors each is capable of locating
and measuring the computer and engineering time the techniques require

to detect each type of error.

An additional goal of the experiment was to observe and compare the
relative testing effectiveness in a multi-error environment of a test tool
capable of both path testing and static analysis and a sophisticated
compiler having automated intermediate value printout and execution

tracing features.

The experiments were successful in providing data on error detec-
tion rates and level-of-effort required for finding specific types of
errors. They also provided a background for analyzing parallel testing
strategies in which the human element, as well as the testing tool tech-
nique, plays a significant role in the software testing effort. One of
the most important byproducts of the error-seeding activity was to
indicate the acute vulnerability of software, especially to errors
which can mask each other or which never appear for any but the most ex-

haustive test data.

1.1 BACKGROUND
Histories of several large software development projects have shown
that roughly half the cost of bringing such a project to operational capa-

city is incurred in "testing" the software after the developer (or)
) b LA

1-1

e ——

e

the schedule) had declared the product completed.l’2 In general, this
type of testing is intended to demonstrate that the software is ready for
operational use; in fact, a large portion of such testing is devoted to
detecting and correcting errors that have gone undetected during
development. To assist in this difficult process of testing, various
computer-aided techniques have been devised and the necessary supporting
tools developed. The value of such computer-aided testing techniques has
been both challenged and supported extensi\rely.3 In the few published
studies on the subject that reported the use of test tools, there is
disagreement on their effectiveness. In none of the studies on medium-
or large-scale software, however, have the evaluations been made in a
controlled testing environment in which automated tools were actually
used. The goal of this project was to run a series of controlled experi-

ments to gather data based on actual test tool usage.

Goodenough4 states that 40«92 percent of errors could be found
using path-testing techniques. He stresses that the limitations of path
testing have not been adequately described and that a false sense of con-
fidence of program correctness may develop if only path-testing methods
are used. However, Goodenough's view of path testing excludes the
functionality of the data, thereby limiting the testing process to
structural path execution. We stress that path testing is not intended
to be performed without respect paid to the 'reasonableness" of the input

data.

1B. W. Boehm, '"Software Engineering: R & D Trends and Defense Needs,"

Proceedings of the Conference on Research Directions in Software
Technology, October 1977.

2D. S. Alberts, "Economics of Software Quality Assurance," AFIPS

Conference Proceedings, Vol. 45, National Computer Conference, 1976.

3D. J. Reiffer and R. L. Ettenger, "Test Tools: Are They a Cure-All?"

Proceedings of the 1975 Annual Reliability and Maintenance Symposium,
IEEE 75CH0918-3ROC, January 1975.

4J. B. Goodenough, "A Survey of Program Testing Issues," Prcceedings

of the Conference on Research Directions in Software Technology
October 1977.

The few studies that report quantitative results for analyzing the
effectiveness of path testing are in disagreement. Het:zel1 states that
path testing is of "little value" in the detection of errors. Gannon2
states that systematic functional and structural testing using a well-
defined test plan and a path-testing tool produced an error rate of 0.3%
after acceptance test for the large JOVIAL program. The disagreement of

errors found by path testing is further shown in Table 1.1.

While Mangold states that 927 of the errors in a program might be
found, Howden and Goodenough state that perhaps 50% might be found.
The word "might" is used because, except for Gannon's work, no path-
testing tool was used to obtain the quoted figures. This lack of
results has lead to the widely divergent opinions on the value of path

testing.
TABLE 1.1
THEORETICAL RESULTS OF PATH TESTING
Total Path (branch)
Errors Testing Detects % Detected Source
*
22 7-14 40-65 Howden
28 6 21 Howden+
224 206 92 Mangold§
? T 50 Goodenoughﬂ

*

W. E. Howden, '"Symbolic Testing and the DISSECT Symbolic Evaluation
System,'" Computer Science Technical Report II, University of California,
San Diego, May 1976.

Tw. E. Howden, "Theoretical and Empirical Studies in Program Testing,"

IEEE Transactions on Software Engineering, Vol. SE-4, No. 4, July 1978.
§

IEEE EASCON, 1974, pp. 123-127.
1lGoodenough, op.cit.

E. R. Mangold, Software Error Analysis and Software Policy Inmplications,"

lw. C. Hetzel, An Experimental Analysis of Program Verification Methods,

Thesis, University of North Carolina, Chapel Hill, N. C., 1976.

2C. Gannon, "A Verification Case Study," Proceedings of AIAA Computers
in Aerospace Conference, Los Angeles, November 1977.

1-3

Howden's1 results are based on the analysis of errors in very small
programs (fewer than 30 statements). These programs, taken from Kernighan
and Plauger,2 contain examples of common programming blunders and provide
a common basis for comparison. Howden, however, did not use a test tool
for his analysis. Hence, for the first phase of our testing experiments
we subjected these programs to actual path testing and static analysis.

A few of these programs were written in PL/1 and had to be translated

into FORTRAN so that test tools could be used.

Very early in the experiments, we found that "error" is a very
ambiguous concept. In any software system, designers and programmers
take certain liberties based on the generality of the program, the pro-
gramming language and operating system used, and the requirements for
meeting size and speed limitations. In an environment that tries to en-
force very strict coding standards, ambiguous comments and intentional
mixed mode might be called errors. For our purpose, we defined an error
as any construct that (1) appeared to violate the program's specification,
or (2) relied on nonstandard characteristics of a compiler, operating

system, or computer.

1.2 PURPOSE OF EXPERIMENTS

Two software testing techniques, static analysis and dynamic path
(branch) testing,3 are currently receiving a great deal of attention in
the world of software engineering. However, empirical evidence of their
ability to detect errors is very limited, as is data concerning the re-
source investment their use requires. Researchers have estimated or
intuitively graded these testing methods, as well as such other techniques
as interface consistency, symbolic testing, and special values testing.
1 i

Howden, 1976, op.cit.

23. W. Kernighan and P. J. Plauger, The Elements of Programming Style,

McGraw-Hill, 1974.
3

R. E. Fairley, "Tutorial: Static Analysis and Dynamic Testing of
Computer Software," Computer, April 1978

This project seeks (1) to demonstrate empirically the types of errors
one can expect to uncover, (2) to measure the engineering and computer
time which may be required by the two testing techniques for each class
of errors, (3) to analyze the relative merits of a test tool containing
both testing capabilities and a compiler containing automated,
intermediate-value and trace capabilities, and (4) to direct attention .

to near-term tool enhancements, based on the experimental evidence.

The experiments for this project were conducted in three phases.
The first phase examined the small programs from Kernighan and Plauger
using the static analysis and path testing capabilities of SQLAB1
separately and the static analysis capabilities of the DAVE2 system.
These experiments were performed as a preliminary analysis of the two
testing techniques. The second phase of experiments was conducted to
determine the types of errors that static analysis and path testing are
capable of detecting during system-level testing. The experiments in-
volved seeding one error at a time into a medium-sized program and then
recording the detection rate and the resources required by each error
detection method. The third phase of experiments was designed to eval-
uate the effectiveness of static analysis and path testing in a multi-
error environment. In this phase the two testing techniques are compared
with the classical techniques of intermediate value printout and exe-
cution tracing automated by a sophisticated compiler. The complete set

of experiments is summarized in Table 1.2.

1D. M. Andrews and J. P. Benson, Software Quality Laboratory User's
Manual, General Research Corporation CR-4-770, May 1978.

2

L. D. Fosdick and C. Miesse, The DAVE System User's Manual,
University of Colorado, CU-CS-106-77, March 1977.

TABLE 1.2

SET OF EXPERIMENTS

Phase Purpose Test Object Test Technique(Tool)

1 Preliminary analysis: Compar- Eight small pro- Path testing (SQLAB)
ison of empirical results grams from The Static analysis (SQLAB)
with published theoretical Elements of Pro- Static analysis (DAVE)
results gramming Style

2 Determination of types of 5000-1ine trajec- Path testing (SQLAB)
errors which can be found tory analysis Static analysis (SQLAB)
(single-error experiment) FORTRAN program

3 Evaluation of a test tool 5000-1ine trajec- Path testing and
in a multi-error experiment tory analysis Static analysis (SQLAB)

FORTRAN program debugging/trace com-
iler (CDC FTNX)

1.2.1 Description of Path Testing

Path testing is based upon the assumption that executing all the
paths in a program is sufficient to reveal a large fraction of the
errors when the program is executed. Or, stated another way, paths which
have never been tested may harbor errors. The only practical way to system-
atically check the execution of each path is by using an automated path-
testing tool.

The first step in path testing is to develop a graph model of the
program using the tool to identify all the paths through it.
This graph model is composed of an input node which represents all entry
points to the program, an output node which represents all possible
termination or exit points from the program, and a set of nodes which
represent all the possible branching points in the program. The nodes
are connected by links which represent statements in the program which
are executed sequentially between any two branch points. Note that this
model assumes that the destination of all branch points in the program
can be determined statically. That is, dynamic definition of branch

points (as in FORTRAN-assigned GOTQ statements when the statement label
list is not included) is not allowed by this model.

In general, it is impractical and unnecessary to test all possible
paths through a program. The number of paths increases drastically with
the number of branches and loops it contains. For this reason, the
criterion of testing all paths through the program is relaxed and re-
placed by the requirement to exercise all of the links (or segments) in
the program graph. These links correspond to all the straight line code
executed in the program between branch points and are called "segments"
or "decision-to-decision paths" (DD-paths). Note that by relaxing the
testing-all-paths criterion to the testing-all-segments criterion, we
implicitly assume the sequential independence of segments. However, ex-
perience has shown that the order of segments is important, thus empha-
sizing one aspect of the path-testing methodology: input data must re-
flect the functional requirement in order to execute the paths in their

intended order.

Path segment testing (known in this report as "path testing," and
having the same meaning as "branch" or "segment" testing) is usually
accomplished in the following manner. A set of test data that results
in correct execution of the program is taken as the basic test case.
Using this test case, the program is executed and measurements are taken
of the number of path segments executed by the basic test data. The data
values in the basic test data which have an effect upon the decision
(branch) points in the program are then altered so that every path seg-
ment is exercised by the set of test data developed in this manner;
the program output is examined for errors, and any execution-time errors
are recorded. This process is extremely dependent upon the ability of
the tester, aided by the test tool, to derive data input values which
result in all path segments being executed.

1-7

1.2.2 Description of Static Testing

Although, in its current state of development, static analysis is
not able to demonstrate the functional correctness of a program it is
easy to use and can detect a number of program errors. The static analy-

sis capabilities of the testing tool are:

) 2 Set/use checking - warning of local variable usage without
prior setting or local variable setting with no subsequent

usage.

2 s Call checking - the number and type of actual parameters for
each invocation are checked against the number and type of

formal parameters.

3. Mode checking - the left and right side of assignment

statements are analyzed for type consistency.

4. Graph checking - the control flow graph is analyzed for
structurally unreachable code and loops in which the control

variable is not changed.

Even small programs can contain errors not easily visible in the
source listing. Figures 1.1 and 1.2 show a sample program listing and
static analysis report generated by SQLAB. Except for set/use checking,
the error and warning messages appear at the appropriate source state-
ment. Error location definition is an advantage which path testing does

not have.

1.3 MAJOR CONCLUSIONS

The set of experiments provided evidence for assessing the
effectiveness of separately using two automated testing techniques for
detecting errors of the following categories: computational, logic,
input/output, data handling, interface, data definition and database.

Also provided by the experiments were the amounts of engineering and

., L -] T —

T PP oabho et e S R

(1

Figure 1.1,

4)
Num oGT, NAXNUN) . 2 3)

1 oLE, N (4e L7
(oLg, ARRAY (r)) i & 4]

(1o, 1)
(15, 13,

STATIC ANALYSIS SUBROUTINE BSORT (NUM o ARRAY)
STMY I0ENT.LINE SOURCE...

? CALL ERROR (NuM)
= caLL ERrRrOR -
- ERRCR CALLED WITH 1 ACTUALLY HAS 2 ARGUMENTS -
39 IFLAG = .TRUE.
. GRAPH WARNING =
. STATEMENT 39 IS UNREACHABLE OR Is IN AN INFINIYVE LOOP -
- nODE WARNING -
e LEFT HAND sIDE HAS wOGE INTEGER RIGHT WAND SIDE HAg MOOE LOGICAL =

D e L L r T e P L L P e L L P L e L L

L b L T T e L T e e P L P L R L L L cecovscmmoosace

STATEMENT ANALYSIS SUMMARY ERRORS WARNINGS
GRAPH CHECKING 0 1
CALL CHECKING 1 0
MOOE CHECKING 0 1

NAME SCOPE 1YPE MODE uSsF OTHER INFORMATINN, .o

B L T T R L e L e e L L e e L R DL L e L e ALt Lt

1FLAG LOCAL VAR]ABLE INTEGER oQutPUY
- SET/USE WARNING -
e VARJABLE IFLAG SET BUT NEVER USED REFER TO STATEMENT(S)-
e 39

MAXNUM LOCAL VARIABLE INTEGER INPUTY
. SET/uSE ERROR -
* VARIABLE MaxnuM USED BUT NEVER SET REFER TO STATEMENT(S)-
- S 6

SYMOOL ANALYSIS SUMMARY ERRORS WARNINGS
eecsssccesrcatounenacse Cegene cocacccce

SET/USE CHECKING 1 1

THE FOLLCWING NONLOCAL VARIABLLS ARE SETee.
ARKAY

Figure 1.2. Sample Static Analysis Report from SQLAB.

1-10

[—,

computer time expended. Table 1.3 summarizes the rate of error detection
and resources. Detailed results, including detection rates for each type
of error within each category, are provided in Sec. 5. The computer pro-
gram used as a test object for most of the experiments is described in
Sec. 3, and each error type and frequency used in the experiments is des-
cribed in Sec. 4.

As Table 1.3 indicates, and Sec. 5 describes more fully, path
testing is more effective than static analysis at detecting and locating
computational, logic, and database errors. Even so, the rate of detec-

tion and amount of engineering time required by path testing show it is

TABLE 1.3
SUMMARY OF ERROR CATEGORY DETECTION
Detection Rate (%) Resources E/C*
Static Path Static Path
Error Category Analysis Testing Analysis Testing
Computational 14 58 4.0/12.7
Logic 14 63 3.5/11.7
Input/Output 17 17 1.0/14.7
Data Handling 28 28 2.5/7.0
Interface 25 25 4.0/19.5
Data Definition 25 25 1.0/5.0
Data Base 0 38 2.0/13.9
Total 16% 45% 2.0/24.0° 3.1/11.9"

*
E = engineering hours (average per error category).

C = CDC 7600 computer seconds (average per error category).

As a baseline, complete compilation and execution took 10 seconds.

+Path testing combined with inspectionaided by path testing.
All 49 errors seeded simultaneously.

1'Average of all errors detected by path testing.

1-11

not sufficient for use as the sole program verification or error detec-
tion technique, and it is rather time-consuming. Static analysis re-
quires much less engineering and computer time (per error), but the pay-

off in finding errors of a system-level nature is not as great.

The multiple-error experiment indicated that an automated means of

printing intermediate results and tracing program execution is more
effective for locating errors than the combination of path coverage
testing and static analysis. The data gathered in this experiment are
presented in Sec. 6. The conclusion drawn from the analysis of this data
is that redundant functional information embedded in programs is neces-

sary for automated tools to be more effective.

An important outcome of the error-seeding activity was that when
program verification is based on demonstrating complete path coverage,
one can still expect approximately 25 percent of the program errors to
remain. Path testing depends upon some manifestation of an error in the
program output. We found that, when known errors were inserted, and the
program was cxecuted with complete coverage data derived from path test-
ing, 25 percent of the errors did not cause any change in the output.

These errors were not used in the experiments.

It is possible that many of those errors are harmless in one
specific application of a general purpose program (e.g., incorrect
computations are never used or are corrected before harm is done). It is
more likely, however, that the data generated to satisfy the path testing
requirements of a specified percentage of coverage cause control flow to
execute sequences of paths which do not exhibit the errors. This is one
reason why path testing should always be coupled with stress or boundary
condition testing. Overall path coverage may not be increased, but the

right sequence of paths may be executed to expose errors.

1-12 l

-—-——————-—-—-—-—-.--—

This set of experiments reinforced the intuitive feeling that
error detection is a difficult and highly individual process. Even
armed with test tools, complete software verification is still very
much a function of human intuition and resourcefulness. The software
testing process should not depend entirely on any single current state-
of-the-art technique but should encompass as many tools as is practical.
Attempting to detect seeded errors of specified type and frequency
during system-level or acceptance testing provides a valid measure of
test data thoroughness (e.g., did the execution output show the presence
of the seeded error?) and fault tolerance of the software (e.g., did

other parts of the software correct the error?)
It appears that, until software specification and implementation

through a computer language are more integrated and standardized,

software testing will never be an automated process.

1-13

T

o s enmbe mms e i

2 PRELIMINARY ANALYSIS

Eight small programs from The Elements of Programming Stylel were

tested using the static and path testing capabilities of SQLAB and the
static analysis capability of the DAVE system. These programs, all
under 30 source lines, performed such functions as table lookup, binary
search, and computing electrical current. Listings of these programs

are included in Appendix A.

There were two motives for spending any time at all on these small
programs: curicsity, and the fact that Goodenough and Howden both have
based comments regarding the validity of path testing on these programs.
Neither researcher, however, used an actual path testing tool in making
their judgements. Table 2.1 presents our results from analyzing the
eight programs. We have categorized the errors found into three
levels. We consider the first level errors the most serious in terms
of their impact on computed results and possible cost (in a non-test-tool

environment) to detect. The third level errors are the least serious.

For these same programs, Howden said that 40-65 percent of the
errors might (he did not actually use a tool) be found using path test-
ing. Our experience was that 70 percent of the errors were found by
path testing. When the programs were subjected to both static analysis
and path testing, 38 percent of the errors were detected by static
analysis and another (no overlapping errors considered by the path
tester) 38 percent were found by path testing. The errors are further

described in Tables 2.2 - 2.4.

1Kernighan and Plauger, op. cit.

2-1

TABLE 2.1

ERROR CLASSIFICATION AND DETECTION RESULTS FOR PROGRAMS
FROM THE ELEMENTS OF PROGRAMMING STYLE

CATEGORIES NUMBER OF ERRORS
Static and Path Path Testing
Testing Combined Alone
SR X B X S + static
Level 1. analysis
Uninitialized variables y A, [0 CR), 7 0 P -+ path
Computational logic 6 2 1 2 Eesting
Loop Logic I T | 5 1 X - undetected
Level 2. i
Unchecked array boundary 9 AN 0 SRR I 0 3k
Equality comparison 1 1
Level 3.
Improper termination . k0 0
Mixed mode 2 3
Unused variables 1 0 0 1
totals 10 10 6 18 8
Total Errors = 26
percent 38% 38% 24% 70% 30%

In this small exercise, path testing alone uncovered most of the
errors found by static analysis. However, errors detected by static
analysis used but a fraction of the resources path testing required.

In addition, the static analyzer points out errors explicitly. The
DAVE system detected all the errors SQLAB did, with the exception of
one mixed mode and one improper program termination error. In path
testing, the execution output must be studied for possible errors, and
the execution coverage reports must be reviewed to determine what paths
were taken when erroneous behavior was exhibited. If there is little
output produced in a program, then the tester may have to add printout

statements to display intermediate results as paths are executed.

puUnNoOj 30U «
8urisa3 yaed £q punojy . 4
STSATRUEB DI3E3IS Aq punoj - §
110112 yoesa 10j

(8ut3isal Yyieqd 210399 UOTIBIBPTISUO)
wolij paAowal sysAyeuy d13els £q paidel’lp sioiay)
8urisa] yaeq Aq pamoy[oJ SISATeuy OI3IBIS

R e e
d S uorjeuTwial weifoad iadoadu]

d ¥ uostaedwod A317enbz

S Aeiie pasnup

d 10113 21807 2duadiaauo)

d dooT @23tutjur [Ed807]

¥ spunoq Aeiie pa)daydup

SSSS Saweu a[qeTaea 3D21i0d0U]

d ¥ dool yBnoayl ssed eaax3y

d dooT ur °zTTETITUTIAI 03 [an[Iey
¥ apow adA3 3ndug

d x S apouw paxTl

d d 31%2 dooT 3091x0duj]

d % 91807 TeUOTIERINdWOD 3ID3110dU]

S S S STqeTIBA PAZITEIITUTUN

AYLVI¥Y | LdLlVOT1d 8YOdINI HOYSNIF JONVTVE HdTVWAN | INZ¥¥ND | NOJIANIS sadAy 1oaag

sweadoigd 21435 Jurumealdoag Jjo sjuawalld

(3ur3isa] yieq °21033q UOTIRIIPTSUOD
WOl paAowal 313Mm sTsATeuy O13el§ Lq paldalap si0iay)
ONILSIL HLVd A9 TIMOTIOJ SISATVNV JILVLS

¢°C 3149Vl

2-3

QuoTy 3uTrisal Yyied

puUnOj 30U «
gurisal yaed £q punoj « 4

110119 yoea 103

uoyjeuymial weiBoad iadoadmy
uosyaedwod K3yrenbz

Aeaae pesnup

10112 27807 adouadiaauo)

door 237uTjuy [Ed1807
spunoq Aeiie paj)yoaydupn

dddd

saueyu I3[QETIBA 3ID3110dU]

dooy y8noayl ssed ei1ix3z

dool uy @azyTeEJITUIaL 03 2an[rey
apouw 2d£3 3nduy

2pou PpaxIy
31x2 dooyr 3I93110dujy

97807 TePUOTIEINdWOD 3ID3110dU]

aTqeTiEa PAZTTEIITUTUQ

ALvaygv

1d1V0T1d

SYOAINI [HOUSNIH

JONVIVE | HATVAAN | INIWAND [NOJIANIS

sueidold 97A3S Surumeldold JO sIuawaTl

INOTV ONILSIL HLVd
£°C T4Vl

sadf] 10113

2-4

s ——————

auoTy Burisay waisdg IAvVd

punoj jou «
dAVAd £q punoj « @

:10119 yoe? 103

uorleutwial weaload iadoaduy

uostaedwod A3ryenbz

Aeaie pasnup

10119 21807 2d>uUaliaauo)

dooT @3furjur TEd1807

spunoq Aeiie pajydaydun

saweu 3[qeTIeA 322110dU]

dooT y3noayy ssed eaix3z

doo7 ur 2zTTETITUTA1 03 danITey
apou ad£3 andujg

spou PIXTR

31%X2 dooy 392110dU]

01807 TeUOTIEINdWOD 1D3110dU]

aT7qeraea pazi[erjrurup

A¥lV3a¥vy | 1d41V0T1d

8YOALNI

HOUSNIE

JONVIVE | HdTVWAN | INJ¥YND | NOJANIS

sweidoiq a143S JurumeaBolg jJjo sIudwWATF

ANOTV ONILSAL WALSAS FAVA
%°C 3T8VL

sadf] 1oaiaz

2=5

}
!

3 TEST OBJECT

The program selected for Phases 2 and 3 as the test object for
error seeding is an example program from the TRAID subroutine package.1
TRAID, a GRC software product developed in 1968 to help solve missile
trajectory problems, contains 105 modules primarily for calculating
powered and guided-flight trajectories and Keplerian orbits. It also
includes support routines for vector and matrix operations, conversion
of units of measure, plotting, and report generation. TRAID has been
in continuous use at GRC since 1968 and has required very few changes

or modifications over this period.

The test program computes the closest approach between an ICBM and
an interceptor missile. Data for the program includes descriptions of
the ICBM's trajectory and the interceptor's flight characteristics,
(i.e¢., thrust, mass, burn time, drag, etc.) and a schedule of inter-

ceptor maneuvers.

The test program employs 57 TRAID routines which expand to ap-
proximately 5000 lines (over 3000 complete statements) of FORTRAN code.
This program was selected for error-seeding hecause it is stable, be-
lieved to be bug-free, and large enough to constitute a realistic de-

bugging problem.

3.1 MODIFICATION OF THE TEST OBJECT

A number of modifications were made to the test program to re-
place some of the non-ANS-standard FORTRAN code which the SQLAB test
tools would not accept, correct errors found during static program
testing, and enable the program to process multiple test cases in a

single run.

1T. Plambeck, The Compleat Traidsman, General Research Corporation,

IM-711/2, September 1969.

3.1.1 ANS Standard Corrections

A lenient compiler and unenforced coding standards contributed to

approximately 167 lines of non-standard FORTRAN code which could not be
recognized by the SQLAB test tool. Three types of illegal code had to
be corrected: multiple assignment statements, multiple statements per
line, and an alien form of DATA statement. Functionally identical ANS-
standard FORTRAN code was substituted for the offending statements.

3.1.2 Static Analysis
Static analysis of the unseeded test program using SQLAB revealed

several potential sources of error. For example, in one case two
locally declared arrays were assumed to occupy contiguous storage
space. The second array was used as an overflow area when the first
array was filled. Data could be read into the second array but was
only referenced by over-subscripting the first array. This error was
indicated by SQLAB's set/use checking facility since the contents of

the second array were set but never used.

Other errors included incorrect array dimensions and a number of
mode violations for data types involving character (Hollerith) data.
None of the errors found, however, appeared to have any consequences
either to the operation of the program or to the printed results for
the example test data set. "Error" as is used here means a violation
of the language definition or a dependency on the non-standard charac-

teristics of a particular compiler, operating system, or machine.

3.1.3 Multiple Test Cases

The test program was further modified to enable the processing
of multiple test cases in a single run. The main program and two of the
TRAID routines were adapted for this purpose. The multiple test case
capability was originally intended to simplify the testing process. An
added advantage is that a significant portion of TRAID's data manipu-

lation facilities are now exercised by the test program.

[P

e - s -

—_——_——-.—————--———

352 Expanded Data Set
The original test data set taken from the TRAID user's manual

exercised 50 percent of the total paths in the test program. SQLAB's
instrumentation facilities and the trace file analysis program were used
to create additional test cases to increase the number of paths tra-
versed. Based upon module function, size, position in the module
hierarchy, and path coverage from initial data, six modules were selec-
ted as retesting targets. The expanded test data set resulted from
using path testing techniques to modify the initial data set. Using

the expanded test data, path coverage for the six modules rose from 44

percent (with initial test data) to 75 percent.

3.2.1 Instrumentation Techniques

Instrumenting a test program using SQLAB causes software probes
to be inserted in the program to trace its execution. The program is
then run with a test data set and a trace file is produced. The trace
file is automatically analyzed and a path coverage report is printed
for each module, as shown in Fig. 3.1. Program paths which have not
been exercised by the test data are flagged in this report. It is then
up to the tester to determine the conditions that cause these paths to

be traversed and to devise appropriate test data.

Executing the complete instrumented program resulted in the path
coverage information listed in Table 3.1. Path testing computer time
(on the CDC 7600) for the complete test object was as follows (in

seconds) :

Instrumentation 30

Compilation of instrumented source 11

Loading object file 1
Execution using initial data 39
Coverage analysis 21
Total 102 seconds
3-3

3Ji10oday °8eiaa0) yied °1°¢ 2and1y

92°92 = 3310333 1N3J¥3d 66 /92 031N22X3 Q3LNI3XI 10N €2 340 TWLIOL

SHTT = SNOILND3X3 Hivd GO 40 WIANNN Wi0L

niierbendedutteedteedtedutubefufingioshibedidi ittt eiettdtocdeieuiiuiotuetetuitdedatoidatadod

1 1 SRR T e 0 i
N N ®%s ete e d O?OOO see n CE R
s S oo Wects g PR ___1 conno 6 8 K% -
T 1 95 1 { I 26
T 1 (413 1 1 Sé€
ot) SN |y (BN oy i SR e e W, o g ik
92 1 €6 1 veexxxx t 1 w5
€ i t43 1 1 I 26
e RO e VLN Y s e St e s e AN RN LR | SR
t I 06 1 1 L] ce
L6 ¢ (1] 1 XXXXXY XY XXXAY XXXy | T e
ity SN, =) - I coecon N SRR
nt 1 L9 1 XXAXXXXAXXXXKXXKXX L AXAXKKXKY XY XAV Y XXX XA XN AVEYYNAX T Y LR
Lo 1 99 1 XXXXXNXA ALY XX XXX I 92
S | SONE. - SR o e YUXKYX XYY XY XYY eaexXyyx 1. SEDT . A
62 1 L) I XYXexxyx I I Y
9t 4 £e 1 XXXXXEXXNXX XXX XYY XAXX XYY Y XX XX XY T 1 £8
x L A e . Sy AR R S JXOCXOEE0O0COOCEX XXX XXX XY A XXX XY XXX Xes | enls SULTAL Sl | AN
I I T 9rlap 18 1 (&)
H N ety eece AR — 332.\.0 LR — LR
MRS SRl Tl el ST T Dot 7 LT RPN | Tl R e
Le 1 9L XXYXXNXAAXCXXXXY XHXXAXYAY | 1 Q9
L8 1 6L 1 XXXXXXXYXXAXYYYNXXY (XX XYX [i Si
..... RS, o AT T Nl R TR R I () OO T SR,) . A S (BT
Le I £ 1 XXXXXX XXX XY XY XY T i <
1 1 § i (4
R, L IESEREEE B (T AR SE YXXXX XK XXX XXX NAXK T 4 e
£ 1 ol 1 I - ni
1 | T I 69
- il un'v T —4 o £ e%e oeg ten ~ M e i
1 I 1 : [0
1 I et z T { 21
el e B s o I WL Lol MR e 4 SR SO 1 1
1 1 9%e eee e T SnGnd tee 3 see
1 1 1T anroan 5 t '3
BT BN Rl TR S S B o L T Thet o - 0 E w0 eliel Sl L
t 1 L 1 1 1 L
| 1 T 000nQ s : 9
KT PSS . |5 I R TR O gy T PN > Sty ¢] SRSRSRNETRN Gt e T
4 b L] I I 1 .
T I £ 1 1 I E-
2 o 1 o X LR i T R A e R S 5 e e srger s S S
i 1 T 1 & | 1 t
1 1
SLIIANN5NY 1 . *00Te==*catNfecccnatlucnccactPhecammcaNFamcmmnsty rfa :
20 ¥3gATN 1 1 ANKIXYA DL QIZIWANON == SHOILNI3XI 30 HIusOM I QGINDI¥3I Ao °*ON ! MW

bt 2 At L b S L AL LAt b L el bl oLl ettt bbbttt Db bl bl bt bttt e L Lt L 2

S3Syd 1S31 2 49 S4Mg3Ix JATLPINNTD SULIYINAS 3IN0G

' . . ~—t

3-4

oS €82°1 $%9 sTe3ol
00T L L dINs1
o1 T OVIX £y 9% 0z OYIANON
9¢L 62 A LILTUM 9L ¥/ 61 NI
001 £ € NI1OdA %9 6¢ €z TOONT
001 € € ALINQ 1y 19 7 4 avidH »
68 61 L1 WASNYL SL 8 9 AV¥ED
gL ST 11 ¥4TLIL 6% €S 9z 1v03
001 T T 23A903 6% 68 9Y NI #
0 €1 0 ¥ouuasd 89 €9 €Y JHOITd =
0 T 0 VIVd10 <9 €2 ST ¥3I1d
0 Yy 0 IAVISIH LS %6 vs oV1d
61 o1 € avingas 6€ €€ €T ONVING
€3 LT a1 daNLS 001 § T D0GAN®
< 16 9y 1noIs A L9 £ Z 3713
61 Lz S INILS 00T I 1 Jaila
5% LY €T NILS 001 L 1 50a
%4 6% 6 AIVLS €9 8 S xrisxa A
< 6T 0T JINOS v8 A 0T NODSIaA gl
€2 €T € @ic11as 00T i | T Jaiva
1L i S vdzs 00T V] Vi SSC¥2
92 66 9z VIVCTad % L9 € r4 1noxnod
06 12 61 AR CRAH) 00T ‘4 T JREOND
78 1€ 9z 102100 0s 9 € TISNEHD
Z€ LY ST 0I¥0 A 00T 1 T asvad
&3 29 01 7990 * 00T S S TVIXVD
L9 £ 4 1990 L9 € Z azv
c¢S % Z GRILENUO 0s Vi r4 ALV
gy %2 T WILEY0 00T S S A1Qv
%4 4t 4 01 4930 00T 9 9 HUARIEd
98e19a0) syleq ITH STNPO 98e19a0) syleq T3ITH 3TNPON
Juada’dg 1e301 syjeq Juadaaqg 1e301 syled
I3S VIVa TVILINI ONISA IJArd90 ISAL 40 IOVYIAOD HIVd
1°¢ dT9VL

TR A MRS WENR OSSNSO WEEE O MR O SEEE O GEER O TWENS O AREEE O WEER e O WmaRs O GEes eSS s SEEe e

3.2.2 Retesting Strategy

The task of increasing path coverage is easily subdivided on a
per-module basis. Several of SQLAB's documentation reports provide
additional information for managing the testing activity. For example,
the wrap-up report, shown in Fig. 3.2, lists the number of statements
and the number of paths in 2ach module. The invocation bands reports
show module dependencies and the calling structure of the program which
are also helpful. These reports can be generated for each module in the

system. One is shown in Fig. 3.3.

Choosing test targets for expanding a data set should be based
on software function, location in the module hierarchy, path coverage
derived from existing data, and other factors particular to the test
object. A general path testing-based methodolody is given in the JAVS

User's Guide.1

For this test object, eight of the largest (in terms of FORTRAN
statements) and highest level (in terms of module control hierarchy)
were selected as targets. These modules are the starred and checked
modules in Table 3.1. Using the initial data set, most of the
modules had fairly low path coverage. It was found by inspection that,
due to the data passed to them by the main program, modules ORIO and
STOUT would never achieve much higher path coverage unless they were
removed from the test object environment and driven separately. Thus
they were omitted as test targets for the purpose of expanding the data

set.

Path coverage of the remaining six modules was used as a basis
for data set expansion. Several additional data sets were derived,

and the resulting path coverage is shown in Table 3.2.

1C. Gannon and N. B. Brooks, JAVS Technical Report, Vol. 1l: User's
Guide, General Research Corporation CR-1-722/1, June 1978

s

- —

|-

e - — sy p—— = - —— n—— . .- s s | ai—. B —" E ah s - g—

NO. NAME TYFE MODE LANGUASE STHTS 4AkLS ENTKS CewAS EQuIV READS WRITS CLPS
1 PRIMERY PROG TYPELESS FCRTRAw &7 6 1 0 0 0 0 -}
2 4Dlv FUNC REAL FCKRTKAY 7 2 1 0 0 0 0 S
3 aLif FUNC by FCnTRAL 13 1 1 2 0 0 0 4
U WZF FUNC ~caL FOrTRA 8 1 1 0 0 0 0 3
S CAXIAL FUNC REhe F CRTKAL 16 S 1 0 0 0 0 -
6 CEASE SUSR TYFLLLSS FixThAl 5 1 1 0 0 0 0 1
7 CHEKFIL FUNC EAL FURTRAL 29 1 [} 1 1 0 0 6
8 CLNORML Fui.C kA FLRTRAY s S 1 0] 0 0 1
9 COUNQUT Suck TYFLLLSS FCRTRAL 7 1 1 1 0 0 ¢ 3

10 CRrRosS SULR TYFLLLSS FOUKTKALK 19 3 2 0 0 0 0 “
11 DATLF FuiC nEbg Fuik TRAR s 1 1 0 0 0 0 1
12 DISCULN Siten TYFLLLSS FOrRDKAR 20 b 1 0 0 0 0 12
13 DNSITY FuiCl REML FurnIRAp 22 1 2 2 0 0 0 8
lu DoT Fui.e rEAL FunTRAN 6 2 1 0 0 0 0 1
15 DTIMEF FuiC PEAL FLRTRARN s 1 1 0 0 0 0 : §
1e ELF FunC rEAL FURKTKAN 10 1 1 0 0 0 0 3
17 BULANG SULKh TYFLLLSS FCRTRA), 112 4 1 3 3 0 0 33
18 FLAC Sut:k TYFLLeSS Founliay le0 3 1 3 3 0 0 9y
19 FLIER SLer TYPLLeSS FUrTRAN sS4 4 1 2 2 0 0 23
20 FLIGHT Suok TYFLLESS FURTRAL ley 11 1 2 2 0 2 63
21 FLIN SuLn TYPELeSS FCRTKRAM 191 4 1 3 1 2 0 &9
22 FOAL Fuil wneng FCRIRAL, 121 2 1 2 0 0 1 53
23 GPRay SLLR TYFLLESS FliTitag, 15 2 1 2 0 0 0 8
2u HEAD Ster TYRLLESS FonrTkag, 1t 1 1 3 1 2 16 ol
25 1INCCL Such TYFLLESS FoerTRAR a7 5 1 b 1 2 0 37
26 IN1 Surn TYFLLESS FUxTRAN 69 2 1 2 2 1 3 25
27 KONVERG FLi.C InTtGer FURTRA), 81 3 3 0 L} 1] 1 4e
28 LSKIP Stin TYreledS FurTRaR 21 1 1 1 0 0 1 7
29 WISTAREL FuL..C Tt Guit FLRTEAN 20 1 4 0 0 0 0 (3
30 OLOATA Stut TYFeLLSS FURTRAWR 7 1 1 b 0 0 1 i
31 ORBF SuLkE TYRLLLSS FUkTRAL 7 4 1 1 2 0 1 22
32 ORBTIM Fui.C S<Ene FUKTRAL, &2 - 1 1 0 0 0 24
33 ORBYTIML FLILC wEAL FLRTRAG 12 3 1 1 0 0 0 4
3u DRB1 Sucit TYFELLSS FULKTKAN 2¢é 2 1 1 2 0 0 3
35 OR&2 Suern TYPLLESS FOKTREL 1€2 S 1 1 1 0 1 62
36 OR10 Subrn TYFPELeSS FCURTRAM 119 9 1 3 2 2 1 43
37 OUTCOL SuLP TYFeLeSS ForlRAg 62 5 1 2 0 0 4 27
sp ODUTSET SLLR TYFCLeSS FuRTRAL 4?7 5 1 1 0 0 0 21
39 PRECATA Sl TYPLLesSS FuxTRAL 249 1 2 1 0 - 18 97
40 SLPA Fui.C nEaL FonTRAj 20 2 1 0 0 0 0 T
41 SETKCORO Scuin TYFLLLSS FURThAL 4y 1 S 2 1 0 4 13
42 SONJIC Fuil Lap Fur T, 4e 1 1 2 0 0 0 19
43 STALE SLLR TYPILESS FunlRa,, Ee 4 1 3 3 0 0 39
4u STIM Seenn TYFRLLSS buxinmg, 97 5 1 3 0 2 0 4?7
45 STINT Suc! TYreeeSS FurTIrAg,) 0 1 3 3 0 0 19
4e SToUul Such TYFLLESYS Funtrhs 15 5 1 3 4 0 0 91
47 SIREP Seenk VYYPRLESS FURTRA &5 4 1 0 1 0 0 17
YR SUBHEAD Scu TYELLLSS Fauniitas, 24 2 1 b 3 0 0 y | 14
4 SUIVEC SU- i TYhLLLdYS buaTuir, 1 3 1 0 0 0 0 1
90 TITLER Suox TYFLOLSS Foi i, 4y 2 1 1 0 0 1 s
51 TRNSFR Sc:bo TYFLLeds FunThig, 1s 5 1 0 0 0 e 13
52 UNT WV Sceree TYRLLESS Bt Vg, ¥ 2 1 0 0 0 0 3
$3 YECLIN Sec® TYFownsy funtnng 7 - 1 0 0 0 0 3
S WRITIT Store IYVLLess o Ting, 67 3 1 0 1 0 1 <9
55 XMAG Fotih WEhy PunTnag s 1 1 0 0 0 0]
56 EnvopoC ol teCalnl tentitng q 3 1 0 0 0 0 1
57 @BERROR Sui @ 1YFELLLS dunlnng 25 2 1 0 0 0 2 9

I T i

Figure 3.2. SQLAB Wrap-up Report

-3

SUBROUTINE STOUT(TITLE'KFORM(NANES.STATESILINES)

-2

PRIMERY

FLIER
FRIMERY

PRIMERY

PRIMERY

Figure 3.8.

-1

FLIGHY

FOAL

OoRB2

PRIMERY
STIN

0
sTour

1

ABsS
1ABS
MINO
MO0
ourcoL
QUTSET

STaLE

STREP

XMt T

2

HEAD
1ags
LSkl
TITL

MOOD
XMtT

AZF
cos
CROS
cor
ELF
MOD
SIN
ontT
XNAG
XNIT

ADLV
AZF
Cos
ELF
1AES
SIN
SQRT
XMIT

SQLAB Invocation Bands Report

3-8

— o

p
ER

S

v

3

LA L AL DL L L R R P L L P P L L L L DL P T L T Y P P P PR P L P T L L]

TABLE 3.2

PATH COVERAGE OF SELECTED MODULES

USING EXPANDED DATA SET

Expanded Data

Total Paths

Initial Data
% Coverage

Expanded Data
% Coverage

Module Paths Hit
FLIGHT 22
FLIN 50
HEAD 53
ORB2 3
PREDATA 94
STIN 31
288

27
89
61
62
99
47
385

68
49
41
16
26
49
44%

81
56
87
61
95
66
715%

The first module for which new data was created was the data mani-

pulation routine PREDATA.

The coverage for this module was increased

from 26 percent to 95 percent by adding two additional test cases to

the original data set. This module is the largest TRAID routine (250

statements, 99 paths), and it was clear that it had not been very

thoroughly exercised by the original data set.

dramatic for other modules.

The results were less

The coverage for the routine that controls

the guided missile flight was increased only 3.2 percent, from 68.2 to

71.4 percent. Coverage of subordinate modules, however, was signifi-

cantly increased.

Finally, it should be noted that a number of program segments could

not be reached by changing the input data.

Many of the TRAID routines

are general in purpose but are only used in a specific mode or for a

specific feature. For example, 10 of the 63 paths in the flight control

routine were found to be unreachable because of the main program const-

ruction. Other paths which lead to abnormal program termination were

checked manually and are intentionally avoided during instrumented test

runs. Path coverage results must, therefore, be interpreted carefully.

3=9

4 ERROR SEEDING

In generating errors in the test software several considerations

were found appropriate:

I. To be realistic, the errors should be representative of
those found in large programs in both type and frequency

of occurrence.

2. The error types must be applicable to the test software

and the test environment.

3 To evaluate test tools which utilize program execution,
one or more errors should lead to abnormal program be-

havior for at least some test data.

The following subsections describe how error types were selected and their
frequency determined, demonstrate how these criteria were applied to
the test software in generating errors, and present the results of exe-

cuting the software with seeded errors.

4.1 ERROR TYPES AND FREQUENCY

Several studiesl—3 have reported on the kinds and numbers of
errors found in real-time programs. Of these, the data in the TRW study
are directly applicable to the error-seeding experiment. We have used
the Project 5 data from that work as the basis for the error types and

their corresponding frequencies of occurrence.

1T. A. Thayer et.al, Software Reliability Study, TRW Defense and Space
Systems Group, RADC-TR-76-238, Redondo Beach, California, August 1976.

2N. J. Fries, Software Error Data Acquisition, Boeing Aerospace

Company, RADC-TR-77-130, Seattle, Washington, April 1977.

Verification and Validation for Terminal Defense Program Software:
The Development of a Software Error Theory to Classify and Detect
Software Errors, Logicon HR-74012, May 1974.

3

4-1

(1) There are several factors which limited the types of errors
which were used for the experiment. The experiment was conducted on
the existing software whose system requirements are not documented.
(2) In that there is no time-critical or interactive requirement, the
test software itself lacks certain characteristics of real-time pro-
grams. Rather the test environment has the test software executing as
a normal batch job. (3) During path testing, certain test tool soft-
ware is executed in conjunction with the test object software with
added overhead. (4) The purpose of the experiment is to evaluate the
use of test tools in locating errors in programs (not errors in specifi-
cations or documentation). Therefore, error types related to require-
ments, real-time performance, interactive usage, operating system inter-
face, and software developmental procedures were not considered

relevant to the experiment.

The project 5 data is based on a list of 79 error types shown in
Table 4.1 grouped into twelve categories. In the TRW study only cate-
gories A through H and J resulted in code changes to the software. For
the experiment, category J and error types D500, D700, D800, F400, F500,

and F600 are not applicable to the test software and the test environment.

The first three columns of Table 4.2 contain error frequency data
from Project 5. Listed for each major category (categories C and E were
combined) are the number of errors resulting in code changes and the
percent of total errors. Since category J is not applicable to the ex-
periment, the percentages have been adjusted to those listed in column
5. In generating errors for the experiment, the applicable percentages
were used as a goal for each major category. Column 6 lists the number
of errors actually generated for the experiment and column 7 lists the
number of errors which exhibited abnormal program behavior in the out-

put from the test software when a single error was present.

R e N—

Table 4.1. Error Types Used in Experiment

*
PROJECT 5 ERROR CATEGORIES

Applicable to

Experiment
A 000 COMPUTATIONAL ERRORS 4
A 100 Incorrect operand in equation 4
A 200 Incorrect use of parenthesis 4
A 300 Sign convention error 4
A 400 Units or data conversion error 4
A 500 Computation produces over/under flow v
A 600 Incorrect/inaccurate equation used/wrong 4
sequence
A 700 Precision loss due to mixed mode v/
A 800 Missing computation v
A 900 Rounding or truncation error v
B_000 LOGIC ERRORS 4
B 100 Incorrect operand in logical expression 4
B 200 Logic activities out of sequence v
B 300 Wrong variable being checked v
B_400 Missing logic or condition tests v
B 500 Too many/few statements in loop v
B 600 Loop iterated incorrect number of times v
(including endless loop)
B_700 Duplicate logic 4
C_000 DATA INPUT ERRORS 4
C_100 Invalid input read from correct data file 4
C 200 Input read from incorrect data file v
C_300 Incorrect input format 4
C_400 Incorrect format statement referenced 4
C-500 End of file encountered prematurely v
C_600 End of file missing v
D_000 DATA HANDLING ERRORS 4
D_050 Data file not rewound before reading v
D_100 Data initialization not done v
D_200 Data initialization done improperly v
D 300 Variable used as a flag or index not set vV
properly
D_400 Variable referred to by the wrong name v
D 500 Bit manipulation done incorrectly
D 600 Incorrect variable type { v
D 700 Data packing/unpacking error [
D_800 Sort error l
D_900 Subscripting error l v

*
From Table 3-2 of TRW Study

Table 4.1. (Cont'd)

PROJECT 5 ERROR CATEGORIES *

Applicable to

Experiment
E 000 DATA OUTPUT ERRORS
E 100 Data written on wrong file 4
E 200 Data written according to the wrong format v
statement
E_300 Data written in wrong format v
E 400 Data written with wrong carriage control 4
E 500 Incomplete or msising output v
E 600 Output field size too small v
E 700 Line count or page eject problem v
E 800 Output garbled or misleading
F_000 INTERFACE ERRORS 4
F 100 Wrong subroutine called v/
F 200 Call to subroutine not made or made in v
wrong place
F_300 Subroutine arguments not consistent in v/
type, units, order, etc.
F_400 Subroutine called is nonexistent
F_500 Software/data base interface error
F_600 Software user interface error
F_700 Software/software interface error v/
G_000 DATA DEFINITION ERRORS /
G_100 Data not properly defined/dimensioned v
G_200 Data referenced out of bounds 4
G_300 Data being referenced at incorrect location v
G_400 Data pointers not incremented properly v
H_000 DATA BASE ERRORS 4
H 100 Data not initialized in data base v/
H_200 Data initialized to incorrect value v/
H 300 Data units are incorrect 4
I 000 OPERATION ERRORS
I_100 Operating system error (vendor supplied)
I_200 Hardware error
I_300 Operator error
I_400 Test execution error
1_500 User misunderstanding/error
I_600 Configuration control error

*From Table 3-2 of TRW Study

-

Table 4.1. (Cont'd)

PROJECT 5 ERROR CATEGORIES *

Applicable to

Experiment
J 000 OTHER
J 100 Time limit exceeded
J_200 Core storage limit exceeded
J_300 Output line limit exceeded
J_400 Compilation error
J 500 Code or design inefficient/not necessary
J_600 User/programmer requested enhancement
J_700 Design nonresponsive to requirements
J 800 Code delivery or redelivery
J_900 Software not compatible with project
standards
K 000 DOCUMENTATION ERRORS
K_100 User manual
K_200 Interface specification
K 300 Design specification
K_400 Requirements specification
K 500 Test documentation
X0000 PROBLEM REPORT REJECTION
X0001 No problem
X0002 Void/withdrawn
X0003 Out of scope - not part of approved design
X0004 Duplicates another problem report
X0005 Deferred

*From Table 3-2 of TRW Study

"Apnis ML 3O -y TqEl W01y PIATISP EIRQ

6% 98 001 0°001 689

- = - ou $7Lr 98 (r) 13430

8 el 8T sak ¢ 91 (481 (H) aseg ele(q

Y 8 01 sa4 6°8 29 (9) uorITUTIEQ ®IEBQ

L/ l 8 sak 0L 8y (€9) aoejIa3jUY

L 01 €1 sak 0°'TI S9 (@ SurTpuey eaeq M

() Indang eleq

9 6 6 sak 8°L 19 pue () anduy e3eq

€1 74 8¢ sak S v 691 () 21807

L VA 91 sak 1°21 z6 V) TeuoTaeIndmO)
IndInQ UT | po3edauan | 91qeorrddy JuswrIadxy NEECEEL:! 510113 ¢ S°T108338) 10113
pe3sajruel sioaag Juadaag 03 a7qed11ddy jo G.399loag aofey ¢ 303foag

s10113 judda3g 1e30]
) 9) (<) (%) (€) (@) (D)

satxo8a3e) ioley uy KLousnbaig aoxaayg ‘2% 219l

4.2 ERROR GENERATION

In addition to generating errors whose type and frequency have
their bases in a published étudy, the location of each error and the
program's resulting behavior were also prime concerns in maintaining an
objective experiment. In the TRW study, no data linking the error type
to software property (e.g., statement type) is presented. Using the
error type made it necessary to establish correlations between each
error type and quantifiable test software properties. Furthermore,
since the test object consists primarily of general utility subroutines,
many having alternative segments of code whose execution depends upon
their input parameter data, we felt that the errors should reside on
segments of code that are executed by a thorough (in terms of program
function and structure) set of test data, and that the errors should
manifest themselves by some deviation in the program's normal output.
To generate errors with these properties, the following steps were per-

formed.

1. The test software was analyzed by the test tooll to classify
source statements, to obtain software documentation refer-
ence material (e.g., symbol set/usage, module interaction
hierarchy, location of all invocations), to guide insertion
of errors, and to generate an expanded set of test data that
provided thorough path coverage. The percentage of path
coverage varied from module to module depending upon the

main program's application of the utility subroutines.

Ze A matrix showing error types versus statement classification

was manually derived.

3. The information from steps 1 and 2 was combined into a
matrix showing potential sites in the software for each

error type.

1D. M. Andrews and J. P. Benson, Software Quality Laboratory User's
Manual, General Research Corporation CR-4-770, May 1978.

4, From the potential site matrix, a list of candidate error

sites was randomly generated.

5. At each site in the list either an error of the designated
type was manually inserted or the site was rejected as being

unsuitable for the error type.

6. Errors were eliminated from the error set which caused a

compiler or loader diagnostic.

Tic! The 86 errors shown in column 6 of Table 4.2 were selected
from the remaining errors using Project 5 error frequency
data. Errors from this set were eliminated if they caused
no change in the output. Fifteen errors were rejected due
to lack of coverage with the test data, and 22 were elimi-
nated for which coverage was achieved without affecting the
output. The surviving 49 errors, shown in column 7, were

used.

Error site execution or reference was verified by an output mes-
sage placed, for the case of executable statements, at the error site
or, for the case of non-executable statements, at the site of reference
by some executable statement on a covered path. The impact of this
evidence is that path testing with the sole goal of execution coverage
is not an adequate verification measure. Most software tool developers
whose verification tools include a path testing capability advocate
their usage with data that demonstrate all specific functions of the
software. Even then, stress and other performance testing should enter

into the total test plan.

4.2.1 Error Seeding Preliminary Analysis

Using the SQLAB tools, the original test software was processed
to generate standard documentation and static analysis reports. The

reports include the following:

1. A list of the software properties of each module with a
count of each statement type and the characteristics of

the interface

2. A listing of the source for each module in the test software
3. Source for all invocations to and from each module
4, Local and global cross reference lists indicating usage for

all names

Se Path identification for each DD-path in each module
6. Hierarchy relationships between modules
7. Static checks on variable usage.

A master list of test software properties was constructed from item 1
and the linkage established between each software property and the
error types. The linkages together with the data for each module were
used to select candidate error sites. The other reports were used to
generate actual errors. The following subsections explain how this was

accomplished.

4.2.2 Software Property and Error Type Linkage

The master list of software properties constructed from item 1
(see Table 4.3) reflects the dialect of FORTRAN used (e.g., DECODE and
ENCODE) and the statement types used in the test software (e.g., no
DOUBLE PRECISION or PUNCH statements). Additionally, the list includes
only those statement types relevant to the experiment (e.g., comment
statements and END statements are omitted). Two interface properties
are included, Parameter and Invocation, although there is some overlap
with other constructs. The linkage between software properties and
error types was established by listing, for each error type, all software
properties that could be the site of an error of that type. These

linkages are shown in Table 4.3.

4-9

-y —
4 gl AEPP AL AL PAPL AL PSP L g st
’ ’ s - T 2P r 2 i
3ie3u]
; Y g _ PALA s / 2 P L P by
A pA INTINONENS
’ W ;P dois
, Ak A aNIMTY
’ ! ’ Nz
" V LA v
LA A p A S PP ’ ’ PR avan
rA s 4 Hve50ud
£AE A AP 7 pi ’ \ PP g
P _ Ak ! | V1901
P e n _ ! ¥IOZINI
pA vy, vy, i | 22 P22 NPEEPEREEA a1 1eovker
2 AL A AALA R R g i]
»n vy ¢ LA : [M2 AAAP ARRRPP AR AL WuRIG-saIy
+
Bt i AAAA ﬁ 2 LAA ?T13-jJo-pua 41
" } i e i i
AL _ A AAL ! 0109 pausyssy
A W ’p f _ NOLLONAA
i i AALLS ’ | r Ivosod
P ! AE A | TVNNALXE
» B TONITVAIODE
A8 ,_ 3 _ p X4INE
LA - S A 2 ’ g 2000
’ fo0 SRR AL AN g
» 2 "y ¢ NOISNIWIQ
T PLA A s / st / Sl TR 30w
Ry £ rP LA PP \ EEES
» 1N0D
i rPA 0109 p33andmo)
AAL pPAA NOWHOD
- rAA A oA ’ P S REEPE R IV
. FOVASAOVE
pop ’ NOISSV
2 rAL rEP ALIL ’ s A 4 R L e /
= | a0 EEEEsmE BE>>>2>>> . e
xz x mmmmm oo on
gs | 2382 3332 gER2228 | SRSECRBT | 238388 ZZTRTTE BEIZTRIRE
388 gg33 8838 8388885 | 3388888 | 888888 g883838 psssgssess
K31adoag
Sseg 39 I~ doyIjurjaq eieq | 35e319301 | SUTIpudH e3eq | lu:u\u_‘_diu S o ps i izl T a1ealjos
W 5 ;IO IR BT I |) Lt asay

sad{] 10113 pue sayioBaie) 10113 a0(ey

SAdAL ¥OW¥d QNV STIILYIdO¥d TYVMLAOS NIIMLIY SIIHSNOILVIIV
€y IT4VL

4-10

The linkages were manually generated. In some instances, syntactic
and semantic rules for FORTRAN were used to determine entries. For exam-
ple, any statement type in which an arithmetic expression is permitted
(e.g., Assignment, CALL, IF) is a possible site for an error in the com-
putational category (error types Al00 through A900). Similarly, FORMAT,
READ, PRINT, WRITE, DECODE, and ENCODE statements are possible sites
for input and output error types in categories C and E involving data

conversion.

Other entries in ihe table indicate statement types which are
directly associated with an error type, although an error may involve a
combination or sequence of statements including other types not marked.
For example, error type B500 (too many/few statements in loop) is dir-
ectly associated with a DO statement (marked in the table) combined with

at least one of any other executable statement (not marked).

In some instances, entries reflect how the test software proces-
sing is accomplished, although it may not be a common usage of the lan-
guage. An example of this is the usage of assignment statements to
construct variable formats, thereby linking the Assignment Statement

type to error types C300 (incorrect input format) and E300 (Data written

in wrong format).

4.2.3 Candidate Error Site Selection

The method used for error selection attempts to be realistic by
utilizing published error types and frequencies (Table 4.2) while remain-
ing objective by selecting placement by random. The test software con-
tains over 50 modules. For each module, data showing the count of each
software property was collected from SQLAB reports (see Sec. 4.2.1) into
a matrix of the form shown in Fig. 4.1: This matrix, when combined
with the matrix linking software property to error type (Table 4.3)

yields a matrix of candidate error sites for each error type in each

module. The form of the candidate error site matrix as shown in Fig.

4.2 1s sub-divided according to major error category.

4-11

XTa13ey 93TS 1011y 23BPTPUEB) °Z°% 3ind1yg

A[NpoR U (A3UAle) 404) Ada] 10143 10] S2T§ d1epIpuE)

sa{npo £§

I LR ELALLL (e B g

1907 g o

Indang/Indug ‘u\.v\fv/
€

Jur(puey eieq -0 ?
=

aselisju] '3)

133G vieq 9 \\\ #

sayiiadoay
a1em1j0S 9f

XTi13B I[NPOK

/£312do1g @21emijos jo wioyg

anpoR
Al1adosg aiemijos
S0MIALINDI0 JO U

*I°% 2an8yy4

sariiadoay
A1BMIJOS 9f

S3NPOK £

Ajiadoay
diem] jos

SInpoR

4-12

-

For each major error category a randomly selected list of candi-
date error sites was generated using a simple computer program to per-
form the necessary computations for site selection. Input to the program

consisted of the following data:

Error Category and Error Type List (Table 4.1).
A list of Software Property Names (See Table 4.3).

A list of Module Names (from SQLAB reports).
Error Category Frequency (Col. 5 of Table 4.2).

Software Property and Error Type Linkages (Table 4.3).
Software Property and Module Matrix (from SQLAB reports).

The number of error sites to generate.

0 ~N O Ut &~ W N -
. . .

Possible causes for each error type (statement sequence

omitted or extra statement, input data)

The site selection program contains no algorithms to reject a selected
site which is unsuitable for a particular error type (e.g., an assign-
ment statement without any parenthesis for error type A200, Incorrect
use of parenthesis). To provide for manual rejection of unsuitable
sites, the number of sites was chosen to be twenty times the targeted

number (50) for the experiment, or 1000 sites.

Output from the program consists of a list of the randomly selec-
ted candidate error sites for each major category. The number of sites
generated for each category is proportional to the error frequency for
the category, with the total number of sites equal to the desired number.
The output for each candidate site identifies the site by module name,
software property, the property's sequence number within the module, and
the error type with its description. In addition, the possible causes
for the error type are listed. Fig. 4.3 contains an excerpt reproduced
from the output for major error category A, Computational. How this
list was used to generate errors is explained in the following sub-

section.

4-13

i

3ISTT 23T§ 1011y a3eprpue) woiy 3diaoxy

d0¥¥d NOILNIANOD NOIS
SISHHINIYVd 40 dSN LOTYUOONI
¥0d¥d NOILNIANOD NOIS

d0¥¥d NOILVONMYL ¥O0 ONIANNOH

FONINDAS HNOYM/NOILVINIWOD INISSIW

NOIIVNDd NI ANVYEdO LOTY¥OINI
NOILdI¥0S3d

.

gty 2an31g
00€Y OMI-4I
00zVv 1 a1
00€v 9 TV

JONANOIS INIWALVIS SI ISAVD
006V ST INIWNOISSV

INIWALVLS VIIXd 40 QILLIWO SI ISAVD

4ONIN0IS INFWILVIS SI ISAVD

008V 9T a1

AONINOIS INAWALIVIS SI dSAVO
00TV L INFWNOISSVY
40¥yd YIIWAN 4118

b ——

d9¥0

NILS

IHOITd
dT9ISS0d” * *
INI
dT9ISS0d " * *
JTdISS0d" " *°
VIvaddd
dTdISS0d" " *
dIdLS
JT1NAOKW

S4LIS %1 1DdTaS
TVNOILVLAdWOD OO0V ¥0d SHLIS FIVAIANVD

4-14

4.2.4 Error Set Generation

The task of generating a representative set of errors for the

experiment consisted of three major steps:

Step 1. Using the candidate error site list as a guideline, a
set of error packets was created which contained a sel-
ection of errors in the desired frequency for each of the

major error categories.

Step 2. Error packets resulting in compiler or loader error

messages or warnings were eliminated from the set.

Step 3. The acceptable error packets were applied. one at a time,
to the source program and the results of evecuting the
erroneous program analyzed and classified for later use

in the experiment.

These three steps were repeated one time to obtain the final set

of error packets used in the experiment.

Error Packets

Step 1 in this process was performed by repeating for each major
error category the following sequence until the desired number of errors

were generated:

) Choose the next (initially, the first) site in the
candidate site list (See Fig. 4.3).

Ze Locate the site in the source program listing (e.g., the
seventh assignment statement in STREP). Reject site if

previously accepted; otherwise, continue.

3 Determine if error type is applicable to site (e.g., Would
a change in operand be a likely error in the statement?).

If not, reject site; otherwise, continue.

4-15

4. If site is an executable statement, determine whether
statement was executed with test data using coverage re-
ports from test software coverage analysis activity
(Sec. 4.3.2.2). 1f site is a declaration statement, deter-
mine, if possible, whether information in declaration was
referenced by using coverage reports. Accept site and

continue if criteria met; otherwise, reject site.

S Generate error packet for acceptable site and mark site

to avoid duplication.

Each error packet includes the following items:

Ie A unique, randomly selected packet identification name.
2: A code change constituting the error,
e A print message identifying on the output the error by

packet identification name (added as the first executable

statement of the main program).

4. A comment statement identifying the error site and type

(added at the error site).

Se A print message to record when the module containing the
error is entered (added as the first executable statement

of the module entry).

6. A print message to record when the error site is executed
(added at the error site or at the location where the

error is effective).

An example error packet is shown in Fig. 4.4. The system utility
UPDATE was used to manage the error packets. Each item consists of one
or more UPDATE directives (first character is *) and FORTRAN source text.
The UPDATE directive serves to identify the packet (*ID) or to insert

test (*I) or delete and insert text (*D) at a designated place in the

4-16

sak ou
EEVS ou
sak ou
sak sak
sak sak
sak sak

stsAteuy 399333
10113y 103 pas(

juawtaadxy
103 pas|

39)deq 10aay aTdues “*4°H 2and1g

agessaw 4oTIND3Xd 23S

98essau K1jua arnpoy

uoTIBOTJTIuapt adA3l 10113 due 33ITS 101137

98essaw uoTIEOTITIUap: 3Idoed 1011z

dJ¥1S uTr 3¢ aurl =28uey)

UOTIBDTJITIUSPT 33ded 10113

uotidraosaqg

(x£003 ¥O2 QILNDIXT LIS MOWUA* " *¥)IVWNOL £000Z
£000Z INI¥d
8E°dAUIS Ix 9
~
—_—
(¥£003 ¥04 GIUIINT ITNAON" ") IVKNO4 £000E)
£000€ INT¥4 i
gz 'amls fe S
00TV (INSWRNOISSV d3NIS 5
g€ dTIS Ix ¥
(003 ¥O¥UI *)IVIWNOd 00T
£00Z INTHd
ST'VHIWING Ix ¢
(R)dzV = (€£)ds
gE auNES Ge ¥
L00M¥3 QIx T
S3jua3u0) w3y
| s - Sw—— T ——

test software. The set of error packets was placed in ascending order
by the (randomly selected) packet names before input to the UPDATE
utility.

The complete error packet was used to analyze the effect of the
presence of each error prior to use in the experiment. For the experi-
ment only the first three items in each packet were used to modify the
software. One or more error packets were selected, then the source of
the complete program including the errors was made available to the
tester in a form which concealed the site and type of error (See

Secs. 5 and 6.

Compiler and Loader Qualification

Step 2 in the error set generation process served to eliminate
from the error szt those errors which were revealed by the compiler or
loader. The complete set of error packets was applied to the source
program and the erroneous source compiled and executed. Error packets
which resulted in compiler or loader error messages or warnings were
eliminated from the set. A warning of an unset variable is an example
of a compiler message which caused rejection of an error packet;
similarly, an unsatisfied external warning by the loader caused re-

jection.

Error Analysis

Step 3 was to analyze the effect of the presence of each error
during execution. The test software, with one error jacket applied,
was compiled and executed with the sample test data obtained from prelim-
inary coverage analysis. The output was then examined for princ messages
from items 5 and 6 of the error packet. In addition, comparisons were
made to normal program output obtained by executing the error-free test
software with the same data. The results of each error run were

classified in one of the following categories:

4-18

ISTT SITNS3Y WOAJ SSFIJUYF POIOA[I§ °G'H dan

uoTINTOS Yyoeal o3 pafred weidoaq

A13anjewaxd sdols weaBoag

98ed °q°1 Burjurad sdooy weialdoig

andino uo 98eqaen

swes 3yl jnojurad apn3iTie] pue apnitSuor]

20BJans MOTaq J[9S3IT saranq ioldasdaajug

Aexo 20ue3ISTp ssTu {asuasuou ST Inojurad Liojzoaleay

1 @pow 7Zg¥0 10J dsudsuou aie sidjauweied 3ITqIQ

waTqoag anding

3nd3no snoauoiad
pP23INd3axXa 33IIS
p23ndaxa anpou
3109339 ou

814

& G gy N Y e g R

8504
€603
L2032
1203
L0032
9003
003
%004
€004
003
1004

10113

4-19

- prg |

i I No observed effect on normal output.

2. Module containing error executed with no observed effect on
normal output.

3 Module containing error executed and error site executed
with no observed effect on normal output.

4, Module containing error executed and error site executed
with error manifested by differences in error run output

from normal output.

Errors in category 4 were used in path testing portion of the experiment.

Errors in all categories were used in other portions of the experiment.

For errors used in path testing, a "user complaint'" about the erro-
neous output was prepared. The output problems included not only prema-
ture termination of program execution, but also discrepancies in user-
expected program behavior, output format, and numeric results. Selected
entries from a list of error packet names and results, prepared for use

in the experiments, are shown in Fig. 4.5.

A total of 86 errors were generated; of these, 49 errors were mani-
fested by erroneous output. A breakdown by error type is shown in Table
4.4. These are also summarized by major error category in Table 4.2

together with the error frequency data.

Table 4.5 shows the distribution of errors by software property
and major error category; the total occurrences of the software property
in the test software is also shown. Each non-blank entry represents a
statement property linked to a major error category. Each non-zero

entry is the count of error packets generated or manifested in the output.
Table 4.6 shows the distribution of errors by count of error pack-

ets in single module and cumulative error run results. Of 57 modules in

the test software, 86 error packets were generated in 33 modules. Ten

4-20

TABLE 4.4
ERROR RUN RESULTS BY ERROR TYPE
Error Errors Error Errors
Packets Manifested Packets Manifested
Category Generated in Output Category Generated in Output
A. Computational Data Handling
A100 2 2 D050 1 1
A200 5 2 D100 1 1
A300)i 0 D200 4 2
A400 1 1 D300
A500 2 0 D400 3 2
A600 2 0 D600
A700 D900 b e o
A800 3 2 10 7
A900 e e L
14 7 Interface
F100
B. Logic F200 4 2
B100 2 ‘| F300
B200 7 1 F700 o 2
B300 3 3 7 4
B40O 4 3
B500 5 4 Data Definition
B600 2 1 G100 2 2
B700 g e, e G200 2 2
25 155 G300 2 0
C/E. Input/Output i o LS
C100 . :
€200 2 2 Data Base
c390 H100 3 2
s H200 5 2
€500 H300 o B = o
€600 13 8
E100
E200 1 1
E300 1 1 7 T
E400
E500 | |
E600 4 1
E700 ks Lgaat
9 6

4-21

é¥l & % % ¢ 9 €Y i 98 £t ¢ Lt Bl & Sz % 18301
8 g ¥ 5B 0 R - 01 T A R 0 0 T 89S uoTIEBd0AUT
4 0 0 1 0 T 0 0 € 0 0 4 0 | 0 0 Sl i233weaeyq
ERIZECE
0 (V] 0 v 0 0 0 y] 1 0 0 0 0 § 0 0 199 dLT¥M
0 ¢ 0 0 0 o 43 AN1LNo¥Ens
0 0 0 0 0 1 dolLs
I 1 I 1 11 aANIM3N
1 1 0 z 1 1 921 NINLIY
0 0 0 g 0 ! 0 0 T VaN
I (o TR ARl R [g o 1 0' 6 0 0 1 0 o0 91 avoy
0 0 0 0 0 0 0 0 1 WVd90dd
7 0 0 V] (V] 0 0 ! 0 0 0 G 0 4 INT¥d
0 0 0 0 i 0 0 11 V21901
0 0 0 0 0 0 1 YIIAINI
L S TR Tt g 91 it G iy 01 ¢ 88¢ 41 1ed1807
1 0 0 0 [¢ 0 0 0 1 0 1 41 Yyoueig-om]
0 V] 0 0 0 0 0 0 o 0 9 €1 41 youeag-321yl
0 0 © 0 0 ! 0 0 0 €1 aT13-jo-pud J1
1 I Y Y 0€g 0109
0 0 0 0 0 0 LT 0109 paudrssy
0 (0] (V] 0 | 0 0 61 NOILONNA
z Z Y Y 0 S LViN0L
0 B 8 » 0 0 0 0 1 TVNYELXT
0 0 0 0 0 0 6€ FONITVAINDA
0 0 0 1 0 1 91 A4INT
0 0 0 0 0 g o 0 g 0 0 0 0 © U 4A0ON3
S 0 1 1] 9 0 1 S 16 oa
0 0 0 0 0 0 €S NOISNIWIA
[¥ 0 0 0 0 o 1 Y450 0 0 0 0 9 30003a
S 2 3 0 8 e S 0 09 viva
0 0 1 1 L6 3NNILINOD
0 " 0 0 0 0 A 0L09 p23andwo)
0 0 (V] 0 0 0 9¢< NOWWOD
0 (3 S 7) S 0 0 4 S R ¢ 0 0 1 (354 ¥T1VD
0 0 [© 0 1 F0VASNOVE
1 0 1 1 0 1 82 NOISSV
7 8] S T SRS /SR Z i £7 B - (S ¢ z T8 $96 Juauudyssy

G e s oy 5 BB S S, MRS s T
[eioy ﬁ,: o R (S 1 (R V(- G B tesol L 8 & 4 4. % ¥ Jusweleas
PHpER— S———— s e o1 ————— a— -

Indang up
pe1SajrueR $10113

— ey

= K108931€) 10113 ioley 103
paie1audn s13foeq s101a13

QIIJISSVID S¥owyd

Gy ATEVL

poalqo 383y ur
$3duaaanddQ

K312do1g aiemijog

4-22

$10119 yg pue Ssa[npow /¢
¥

Ly €8 86 00T ¥/ $10112
K 16 S¢S 8¢ %/ Sarnpou
6% e 1L 62 | %8 1€ i 98 13 3 [eior
__ NSRS B0 -
| _ 8 1 m 8 1 W 8
|
81 EaB zt z _ A z ” 9 e
| | =
0T (4 S 1 { | 0 ' S
" 1 ¥ z 91 Y | 91 Y v
9 z A Y 6 € 6 £ €
81 6 81 6 vz 4 W 24 4| 4
1 11 o1 01 8 8 “ 01 o1 | 1
| | !
| ﬁ |
s10113 S3a[NpPOK _ s10113 SaTNpPON si10113 satnpow | $10113 S3[NPOW | 2[nPok
(7 £10333®)) " (%8¢ satiodaie)) (yR¢*Z sataodaie)) H (HR€*Z*1 sara08aie)) | aad saoaagz

IndinQ ul pa3ISaJTUBK 1011F ' PIAINDIXF 3ITS 1011 | PIIndaxy I[NPON SNOAUOILF p2i1e12udy S3I3OBJ 10113

SATNAOW NI SY0¥¥d A0 NOILNIIYLSIA

9% FT4VL

e ——

modules had only one packet and no modules had more than eight. During
single-error runs, modules containing 84 of the 86 errors were executed

in 31 of the 33 error-seeded modules (two were contained in error-
recovery routines not executed for the sample test data). The error
site was executed for 71 of the 86 errors in 29 modules; but the error
was manifested by the output in only 49 of the 86 error rums in 25

modules.

Note the large drop (22) in the number of errors manifested in
output from the number whose site was executed (49 from 71). It is
not uncommon for software containing errors to produce the "right'" out-
put even if the site of the error is executed. Upon analysis, these
errors, although potentially dangerous, proved to be harmless in the
test environment. For example, one caused calculations to be needless-
ly repeated, another preset data which was later reset before being
used, and a third performed calculations whose results were never used.
All three of these errors were time-consuming errors which could affect
real-time responses. Table 4.7 lists the reasons these 22 errors re-

sulted in acceptable output.

TABLE 4.7
CATEGORY 3 ERRORS (SITE EXECUTED)
Reason Er}or Not Manifested Number of Errors
Variable value(s) acceptable 8
Variable reset before use on path taken 5
Loop executed only once 3
Statement sequence has no effect
for path taken 2
Timing not critical 2
Variable not used after set 1
Input data complete 1
22

4-24

S ——— o —— e e s

b PP

5 SINGLE-ERROR EXPERIMENT

5.1 DESCRIPTION

Errors from the seven major categories were seeded, one at a
time, into the FORTRAN program according to the frequencies shown in
Table 5.1 and Fig. 5.1. For each error the analyst was given a compi-

lation and execution listing which gave no clues to the error's loca-

tion. He was told what was wrong with the output and had, as a specifi-

cation of the proper program performance, a listing of the correct output.

The task was to find the error using execution coverage analysis (path
testing) or inspection, whichever seemed more appropriate, correct the
source, and execute the corrected program to verify the output. Human
and computer times were accounted for from the time the tester re-
ceived the erroneous listing to the time he delivered the corrected

listing.

To evaluate the types of errors detected by static analysis, all
49 errors were simultaneously seeded into the program after determining
that they did not interfere with each other in the static sense. Only

one computer run was required for this evaluation.

Unlike static analysis, which explicitly detects inconsistencies
and locates the offending statement(s), path testing is a technique
that demands skill to interpret the execution coverage data as well as

to recognize improper program performance from the program's output.

5.2 PATH-TESTING PHASE

For the path-testing evaluation phase, we found that the errcris
were located using three detection methods: path testing alone,
inspection aided by path testing, and inspection alone. Some errors
were easily detected without the necessity of instrumenting the code
to get path coverage. Some errors were found when the path coverage

reports narrowed the search to a set of suspicious paths--but then

=1

COMPUTATIONAL %

LOGIC W—I
INPUT/OUTPUT @-’

DATA HANDLING %

INTERFACE %

DATA DEFINITION %
SN i .

OTHER

TRW STUDY
1 GRC EXPERIMENT - ALL ERRORS

12.1%
147

24.57
287

7.8%
of
e

1%
13%

7%

or
o

8.9%
10%

16.2%
18%

12.5%

o
o

Figure 5.1. Error Frequency in Major Categories

AN-53960a

PSR- PN

*Apnas M¥L jo Z-v 3Tqel

wolj PpaATIap EILQ
¥

6% 98 00T 0°00T 689

= - - [41 98 (r) 12430

8 3 8T 91 5 (H) aseq ele(

Vi 8 0T 6°8 9 (9) wuoratTuTieqQ ®BlIE(Q

% /4 8 0°L 8y (€)) |2dejas3jul

/i 01 €T 0°1T $9 (@) Surrpuey eleq

(a) andang ejeq

° 6 6 8L 8§ pue (2) anduy exeq

gl Y4 8¢ (74 691 (9) 21307

L 71 %1 T et Z6 (V) TeuoTrleIndwo)

IndinQ Ut PEFEEEIED) °1qeo11ddy *wuouum s101x17 wwwmowmuwu 101x3F

PEREERS 418350 s10113 juadi9g jo S wuwﬂoum ¥ zolel ¢ 322l0ag

sioaxajg Juadaag 1e30]

(9) (s) (%) (€) () (D

SAI¥09ILVD ¥OLVW NI AONINOIYI d0O¥¥d

1°6 FTdvl

vy

inspection was used to actually determine the error. Other errors were
found directly by observing the control path behavior from the coverage
reports and the path statement definition listing. In a few cases the

wrong "error" was found and only some of the incorrect symptoms dis-

appeared (these are noted in Table 5.2).

Figure 5.2 shows the frequencies of error categories detected by
the methods described above. The dashed lines show the effect of some
degree of path testing coverage by reporting the sum of path testing
alone and inspection aided by path testing. As one might expect, logic
errors and computation errors (since they often cause a change in con-
trol flow) are the best candidates for path testing. £rrors in these
two categories are often the most difficult to locate, unless a de-
tailed design and specification are also available. Input/output and

data definition errors are usually easily detected by inspection alone.

More comprehensive results are shown in Table 5.2. Note that not
all minor error types were seeded into the program, owing to project
limitations. For each error seeded, Table 5.2 shows the technique used
to detect it. An asterisk next to the technique's indicator signifies
that the erroneous statement was located but the "correction" was not
the proper one, or that more information (such as a specification) was

needed to make the proper changes.

To assess the value of path testing, an account was kept of the
resources expended. The average engineering time in hours for finding
each error is shown in Fig. 5.3. Most of the errors detected by in-
spection required only about 1 1/2 hours to find and correct. On the
other hand, the more difficult errors requiring path testing took about

4 hours.

P33unod) apewm uoyidariod addoaduy 10 POITOOT 3II% 10117 = 4

(s10112 1e3031 30 Z9T) P?3I2213p 10U 10117 « o

(s10112 1E301 jO 21%) ATu0 L0;100dSU] w 1

(p2313232p 3j0U SE

(®10119 1e303 jo 30z) fuyisay Yyieq £q popre uojldalsul = y
(510113 [v303 jo z67) Aruo Surasay Yyivd = ¢

(840110 11303 jo 291) wyskleuy djIelS = §

6% ['}] 8
= —_— — el et I (=
= [1 11828 003 I2§S PIIYF 3INCIT) 0093
. - 9 0 t 1 Indano Suissya 30 23a[lTedUl 063
SV 1'd == 3991100uUj 1€ SIJUn vIT
% Uwvild F i el I Jeuw10] Suoam uy ur31yjia vieq Q00€H
z 1'v anyea 1521 1
-10du} €1 pIzZJTERIIIUT vIed QOZH n 1 a4 s IUIEIIVIS IE.30] oaa
< 14 aseq Y3 01 Jugj oo Laiiim vavg O0Z3
< o4
BITP U POZIICIITUT 10U eieg QOTH z 1°1 °ils ®
TSV VIV 4 IDv1100UT WOr § prax IndUl 00T
e Y X LINEL0/123NE *3/9
4 'y == spunoq
3O InG paduliajaxr vieq 00z €1 o1 z (douy
z) S pauoysuauyp i v i SSLPEN SHIPrIINE) S oEEs
/Pour3ap Ariadosd 10u rivg 0OTH 19quAnl 3VI202:ML POICINIT LOCT 00GE
NI3” ; . v o‘v'v'd dour
: NOILINIJIQ Viva 9 ug sILswIILIS AA3/fute col 00SY
~.~ 10119 € O‘<.L m.m g3e0y
33TJ133uy daumljos/aaemlyos 00Ld UOFITPUOD 10 Dp¥o[Bu:<iitk 00%
z yI1'd aderd fuoam uy aperu a0 € a1'1 PaYOeyd dupaq apgrrava Yuoim Ol
dpem J0U JupInoaqns 031 [1e) 0024 -
L § d doUIndIS
JOVINLINT 7L JO Ino sarifalIdL o3Yel COTH
s I kA 1 od uorusaadya
1 d 30119 Buyidiidsgng 0064 1e21801 ugp pueiddo 32211004 QOTH
< o'y s auen Juoim 41907 g
341 £q 01 paiivjer drqejies Qonq " ¢ . R
k4 1% Araadoadug T @4« == uojreIndwod JuyssTi OCLV
SEROPISORISSTIRIIFUT aRT 00LQ 1 1 10110 UOJSIAAUOD BILP 10 SITUN QO%Y
2 3) s duop Jou UOFIEZITEIITUF eIeQ QQO1Q z 0'd s syseylvoaed Jo osn 132110941 QOTY
1 Y Burproax . . vie 21102 :
910399 punomd1 30U 3T vieq QS0Q 4 v'd uoy3rnba uyp puvaodo 3d21102u1 QO1Y
IVNOTIIVIAZ2 iy
ONI'TANVH Yiva 1 i
Ini3ng uy aseyq syshieuy 7 £103891¢) _ anding uy uselq sjpsAjvuy Azodorvy
p2isajjuey SBujpisay B ELETY pRisojTueR Surisoy d13Iels
10123 Yieg sao1a3 yaed
HdAL ¥Y0¥¥d HOVA Y04 NOILDALIA Joydd
¢S HT19VL
et Rl B2 - g — r— M sam—

5=5

|
|
|

.

COMPUTAT IONAL
7 ERRORS

LOGIC
13 ERRORS

II:PUT/OUTPUT

- — - ——— - ———

L7000 i 293 = i

LLLITTT 14%
]

————— —————

T 145

6 ERRORS flNNNNNNENNRaNERRRRREanIRANRRARERRRNRRRRRRNRRREN!
----- 1 3
DATA HANDLING QUL - - - - -) e
7 ERRORS [IliRNANNRRRNRRRERRRNEERREERNNN| 56%
14%
INTERFACE Wz 28%
4 ERRORS i]]I[II[I]]I[EIJ'IIDID]I[[[[I]] 50%
25%
DATA DEFINITION] 2%
4 ERRORS INNNRRRRRRRRRRRRNRRRRRRANRRRRRRRRRRRRRRRREREN) 75%
0%
DATA BASE S 1232
8 ERRORS ARRRRRRRRRRRRRNRNN)] 379
] 25%
DETECTION METHOD
N WZZzzzZA PATH TESTING ONLY L TT7) METHODS A + B TOGETHER
B [____] INSPECTION AIDED BY PATH TESTING
¢ [IIIIIII] INSPECTION ONLY 1

(] UNDETECTED ERRORS

Figure 5.2.

Path Testing Frequency of Detected Errors
By Category

5-6

COMP L ' e ; 1
B =
LOGIC mmm s |
7 7. .
INPUT/OUTPUT %
DATA —
LIS
vrereace I
S Y
e
DEFINITION [-
DATA BASE ///////W// /'/// A
| | |). 1 | | |
1 2 3 4 5 6 7 3

ENGINEERING HOURS
DETECTION METHOD
PATH TESTING ONLY
INSPECTION AIDED BY PATH TESTING
([TTT] INSPECTION ONLY
(] UNDETECTED ERROR

Figure 5.3. Path Testing: Average Time Expended per Error

L STATIC ANALYSIS PHASL

Static analysis has capabilities for detecting infinite loops,
unreachable code, uninitialized variables, and inconsistencies in
variable and parameter mode. Some sophisticated compilers have a few
of these capabilities. In our experiment, static analysis detected 16
percent (8 errors) of the total 49 seeded errors. Figure 5.4 shows the
frequency of detected errors by major category, and Table 5.2 lists
each error type found by static analysis. One error detected by the
graph checking capability of the static analyzer was unreachable code
due to a missing IF statement. This error (B400) was rot detected by
either path testing or inspection. Unreachable code can be very diffi-
cult to locate in code filled with statement labels and three-way IF
statements as was the test object for the experiment. Unreachable code
may be harmless or it may not, but it is always a warning of possible

dangers or inefficient use of computer resources.

While static analysis did not detect a high percentage of errors,
and while most of the errors it did find were also detected by path
testing, it has the distinct advantage of being a very economical tool.
Only two engineering hours and 24 seconds of CDC 7600 time were re-
quired to review the static analysis output and locate the errors. A
disadvantage is that if programming practice allows frequent inten-
tional mixed mode constructs or mismatching number of actual and formal
parameters, the static analyzer will issue frequent warnings and
errors (133 in our experiment) that are harmless to the proper execu-

tion of the program.

Both error-seeding and error detection activities of the experi-
ment provided concrete data for several conclusions about the two
testing techniques. While the experiment was designed and implemented
in an objective manner and can be repeated by other interested re-
searchers, it is not our intention to apply a metric or statistical

significance to the error detection capabilities of the testing methods.

COMPUTATIONAL
7 ERRORS

LOGIC
13 ERRORS

INPUT/OUTPUT
6 ERRORS

DATA HANDLING
7 ERRORS

INTERFACE
4 ERRORS

DATA DEFINITION
4 ERRORS

DATA BASE
8 ERRORS

Figure 5.4. Static Analysis: Frequency of Detected Errors by Category

14%

147%

17%

] 28%

=

il

25%

25%

o
el

AN-53963

It is our purpose, however, to report the types of errors that can be
detected by these techniques. The results of the experiment can also
be used as a reference for tool developers seeking to sharpen their

tools for more rigorous error detection.

5-10

6 MULTI-ERROR EXPERIMENT

A multi-error experiment was conducted to evaluate the utility
of static analysis and path testing under more realistic conditions
wheré several errors exist in a program. The experimental conditions
were designed to simulate a typical software testing environment in
which the program can be compiled and run but the performance or out-

put does not meet specifications.

There are two aspects of the multiple error situation which makes
it quite different from the single error conditions. First, the actual
number of errors in a program is not known. The tester might try to
estimate the number of expected errors, but will not be sure of the
extent of the testing task. Testing strategies may be adjusted on this
subjective assessment. Also, estimates of the testing time required and
the degree of testing completeness will be based on this imperfect infor-

mation.

The second aspect of multiple errors not found in single error
conditions is the problem of one error masking the effects of another.
The syndrome of "just one more error' is due at least in part to error
symptoms which suddenly appear when an error is corrected. Many times it
is difficult to determine whether latent errors are exposed Oor new errors
are introduced when "correcting'" a suspected error. There is also a
fatigue factor or saturation limit on the number of errors one tester
can find, and this limit is almost always less than the actual number of

errors in a program.

6.1 DESCRIPTION OF THE MULTI-ERROR EXPERIMENT

The multi-error testing environment was established by seeding
the 5000-1line FORTRAN test object (program) with 22 of the errors
used in the single-error experiment. The error categories and fre-
quency of seeded errors are shown in Fig. 6.1. This collection of

errors was the largest set which could be introduced at one time

6-1

COMPUTATIONAL

LOGIC

INPUT/OUTPUT

DATA HANDLING

INTERFACE

DATA DEFINITION

DATA BASE

OTHER

jprzzzzzzzzZd TRW STUDY
1 GRC EXPERIMENT - ALL ERRORS
s] MULTI-ERPOR EXPERIMENT

Figure 6.1.

12.1%
14%
13.6%

24.5%
T 28%
. 27.3%

7.8%
9%
4.59%

7

18.2%

%
: 9.1%

8.9%
10%
9.1%

wzz

16.2%
- 18%

iz 12.5%

0%

Error Frequency in Major Categories

' AL
3360

AN-5

and still have the program run to ''mormal completion.'" Figure 6.2
shows a comparison of the number of errors seeded with the number of
errors found in otber delivered software. This graph, taken from
Gannon,l indicates that 22 errors could be easily expected in a pro-

gram of 5000 lines which has been acceptance-tested.

Two testers analyzed the error-seeded program--one using SQLAB
for static analysis and path testing and the other using the debugging
trace facility provided by the compiler. The two testers worked inde-
pendently and neither was involved with the single-error experiment.

The number of seeded errors was not disclosed to the testers.

Both testers were allowed the same amount of time (120 hours)
to conduct their tests. Both worked from the same test object and
test dataset, and both used the same computer facility. Both testers
were free to use extended compiler reports, insert debugging print

statements, and modify the supplied dataset.

Activity reports were prepared as in the single-error experiment
to document the error analysis and correction process. A log was also

kept to help document the sequence of actions taken in detecting errors.

6.2 RESULTS OF THE MULTI-ERROR EXPERIMENT

The results of the multi-error experiment are difficult to inter-
pret for a number of reasons. Individual performance in programming
and debugging is highly variable, and since only two people partici-
pated in this phase of the project, statistical measures cannot be
derived with confidence. There are, however, some interesting com-
parisons to be drawn from the data collected and some ideas for

improving testing tools and techniques.

1C. Gannon, "A Verification Case Study," Proceedings of AIAA Computers
in Acrospace Conference, Los Angeles, November 1977.

CUMULATIVE NUMBER OF PROBLEMS

10,000 O MULTI-ERROR EXPERIMENT

® PROGRAM TESTING DATA
A V&V

T TTTTT

™
.

TTTTT]

100 /

i
10 I e T

>
N

1000 ‘ /' /

o 845
X

AN-47553

A (SRS | (A0 (351 4 1)

1.0 10.0 100.0
THOUSANDS OF PROGRAM LINES

A DATA FROM RUBEY ET AL., LOGICON, 1975

e DATA COMPILED BY BALKOVICH, GRC, 1977
O MULTI-ERROR EXPERIMENT, GRC, 1979

Figure 6.2. Errors in Delivered Software.

The variation in individual performance in programming and debug-
ging was found to range over more than an order of magnitude by
Sackmanl in the early 1960s. More recent experiments by Myer32
confirm this variability and indicate that modern computer science has
not improved this aspect of human fallibility. From these independent
results it is surprising how closely the results of the multi-error

experiment compare.

6.2.1 Error Detection Results

The results of the multi-error ecxperiment are presented in Table
6.1 which is organized by error category. Of the 22 seeded errors, 11
were found by the tester using the SQLAB test tools and 15 were found
by the tester using the debugging trace facilities provided by the
compiler. Nine of the errors were found by both testers. The bar graph
in Fig. 6.3 provides an overview of the categories of errors detected

by each tester.

The information in Table 6.1 is presented in another form in Fig.
6.4, organized by the order in which the errors were discovered by
the two testers. The horizontal axis represents the sequence in which
errors were found by the tester using the SQLAB test tools. The vertical
axis represents the sequence in which errors were found by the tester
using the compiler's debug-trace facility. The error numbers and their
categories appear at the coordinate positions corresponding to when they
were discovered. For example, error E047 was the sixth error found by
the SQLAB tester and the eleventh error found by the other tester. Hence,

error EO47 appears at coordinate position (6,11) in the figure.

lH. Sackmann, Man-Computer Problem Solving: Experimental Evaluation

of Time-Sharing and Batch Processing, Petrocelli Books, 1970.

2G. J. Myers, "A Controlled Experiment in Program Testing and Code

Walkthrough/Inspections," CACM, Vol. 21, No. 9, Sept. 1978.

*sysATeuy OF3els £q pajdeiaq —

*10119 9yl jo suojdwks 2wWOS Pa3IIBII0)

‘UOF3IO31100 23efidoadde apew pue 10113 3yl punog A

| |
‘6L _ ‘oS 114 *¢8¢ g4 1t _ 144 SIV10L
8.2
8°CY 0°'c 5 /£ 9°Y 0z 8 / 6003 O0tH
9°01 i €€°0 v A 1°02 ST'E 6 /£ 7102
£°TL i s €1 / 0s03 09ZH aseg elec
i _ STl L A 0°'2 st” L / £503 0cz2
g-o¢ i 2°Z 6°€C (4 S £ 807 0015 UOYIFUR3AC TIRQ
: +
Loz | 0z 8 , (A ST W0z 0044
9°0C { sz* ¥ 1503 coed adryaau
81 i oFn A / i 911 (42 L] Vs | vred 0593 andang
€Sz n (55 S 9 2 9°ZeE s°st . _ 2003 006¢
(47 | £ € S / g § s°0 1 / gco3 00%C
1°9t S0 £ 7 9°0 01 z / 6903
77017 291 11 / 6°¢ 02 9 / 703 00za 2uyrprey eieq
8°5¢ SL'% 3¢ A w A
0°0§ A4 71 A ! i 1902 008
203 S°E 9% 0T 1 #~ zt03 0ove
€76 i'6 o1 Vo €61 0y [x 9.03
84T 01 1 £ £ sz'1 € [/ s103 ooce
s°08 $°E €°1¢ s o1 \ €103 0028 o1807
| ! u _ 8103 ooy
[i . 8003
9°18 S°€ 23 / A | 0°€ i o1 Vs 1003 0o1v TeuoTIRINdDO)
(spuod23g) $1noy) aduanbag punog (spuod3g) (sanoy) aduanbag punog 1oGuny £10223%)
231l *<=0) swyl ‘a8u3z aury ‘duo) awry -a8ug 10113 10113
|
¥3LS3IL QISVE-¥ITILR0D % ¥3ILSIL qISYa-AVIdS

JIANIdXd SHOYNOSHY ANV ANNOJ S¥o¥¥d -

1°9 T4Vl

INIWIYIdXd JOyyd ITdILTIAN

S ———

% 3

COMPUTATIONAL]
1

i R

LOGIC 4
:] 2
T4, 4

DATA HANDLING 4
— ;

S, 1

INPUT/OUTPUT : 1
» 1

2
INTERFACE W 1
0

2

DATA DEFINITION 1
s ' 2

W 4
DATA BASE 3
2

7777/] SEEDED ERRORS
(] ERRORS FOUND BY THE COMPILER-BASED TESTER
"] ERRORS FOUND BY THE SQLAB-BASED TESTER

Figure 6.3. Categories of Errors and Method of Detection
in the Multi-Error Experiment

AN<=5406}

ERROR DISCOVERY SEQUENCE -- COMPILER BASED -TESTER

NOT E085 £032 L
FOUN?J;' G100 B400 3
3
E £089
14 b E0O1
\ B500
B £070
\\ H200
E£007
L A100
& E047 \
D200 \
E076
L & B300
L E009
H300
| £028.
8 F700
-~ E067
3 \“~\\ 6200
6 |- N E002
b . D900
[D400 \\\\\
E072
/i
\\ H200
£069
D200 |
= E014
£ £600 \\
n E015 \
B300 \
SN, Sy ST i PEALN W B L LA S R 7 |
2 4 6 8 10 NOT

FOUND

ERROR DISCOVERY SEQUENCE -- SQLAB-BASED TESTER

* FIVE ERRORS NOT

Figure 6.4.

DETECTED BY EITHER TESTER

Order of Error Discovery in Multi-Error
Experiment

6-8

S Ap—

geveral direct observations can be made from the representation

of the data in Fig- 6.4 which were not apparent in Table 6.1. The four
errors included in this experiment which were found using SQLAB's static
analysis capability and discussed in Sec. 5.3 are underscored in the
figure. Errorxr number E036 was an easy one, found early by both testers.
This was & data handling error (category p400) in which the wrong
yariable mname was used as an argument in a subroutine call. The other

three errors seemed O be much more elusive.

The two errors found by the SQLAB tester put not by the other
tester were diagnosed by static analysis. The first was a data defi-
aition error (category G100) which was caused by changing the name

of a yvariable. The change€ i{n the name caused a change in its default
datatype and, hence, its attributes. This error, pumber EO085, was
indicated by two mode warnings which were camouflaged by 17 other inno-

cuous mode warnings in the containing routine.

The gecond error, number E032, was introduced by deleting 2@ con-—
ditional pbranch statement from a module, simulating 2 "missing logic"
error (categoTy B400) - This error was clearly diagnosed as making 2

gection of code unreachable.

Error number E028 was found by the tester using the compiler‘s
trace facility but not by the SQLAB tester: This error was an inter~
face error between program modules (category F700). It was introduced

by simply reversing the order of two parameters in a subroutine heading-

SQLAB generated 12 mode warnings about this error put none of the warnings

was even near the gource of the error. The warnings were reported at
the CALL statements which invoked the erroneous gubroutine put none
appeared at the source of the trouble. The problem was compounded
because the warnings all disappearcd .en the of fending subroutine
(which had no reported errors) was removed from the analysis tO expedite

testing.

Four distinct classes of errors can be derived from the data in
Fig. 6.4. The four errors clustered in the lower lefthand corner
represent easy errors which are quickly and easily diagnosed and hence
are perhaps not serious problems. The other five errors found by both
testers are somewhat more difficult to find and hence might be classi-
fied as moderately difficult. The collection of eight errors found by
one tester and not the other form a class of errors which are more
difficult to diagnose than the errors found by both testers. The last
five errors, which were not discovered by either tester, represent a
class of subtle errors which are likely to escape detection during

formal testing.

6.2.2 Resources Expended

The resources in terms of engineering and computer time used by
the two multi-error testers are presented in Table 6.1. Only the times
which could be directly attributed to individual errors are recorded in
this table. Hence, some of the entries have been left blank. Also,
the total times reported are larger than the sums of the individual

times recorded in each column.

The first item to note is the total engineering time spent by the
two testers. Each tester was allotted 120 hours for their task. The
SQLAB-based tester spent 72 hours; the compiler-based tester spent
only 50. Both testers expreésed a feeling of having reached the limit
of their effectiveness in finding more errors. The SQLAB-based
tester seemed overwhelmed by the complexity of the mathematics and the
inscrutability of the program. The lack of specifications for the pro-
gram and documentation from earlier testing efforts also contributed.
The compiler-based tester thought there was probably only one error
left in the program (when in fact there were seven more errors) but

felt it would take an inordinate amount of time to diagnose.

6-10

IO

Perhaps too much emphasis has been placed on the testing tools
and not enough on human factors. The psychological stress of testing
and debugging a program can be severe. Both testers found the task
quite difficult and frustrating. The satisfaction of finding an error
did not seem sufficiently rewarding to stimulate renewed efforts. The

reward was often the exposure of symptoms of more errors.

Comparison of the resources (engineering time, computer time,
etc.) used by each of the testers shows no statistically significant
differences based on Sackmann's and Myers' evidence of individual
variability. The time spent per error which can be derived from the
measured data showed the largest difference between the two testers.
The tester using the SQLAB test tools spent 72 hours and found 11
errors or about 6.5 hours per error. The tester using the compiler's
trace facility spent 50 hours and found 15 errors or about 3.3 hours
per error. The ratio of 6.5:3.3 (1.97), however, is still not stati-
stically significant. The compiler-based tester felt that the de-
bugging-trace facility reduced the time he spent to about one-half of
the time he would have spent inserting debugging print statements

manually.

Another parameter derived from the measured data was the amount
of time spent per computer run. The tester using the SQLAB test tools
spent 72 hours and ran 78 jobs or about 56 minutes per run. The tester
using the compiler's trace facility spent 50 hours and ran 90 jobs or
about 33 minutes per run. The ratio of 56:33 (1.70) compares closely
with the ratio of 1.97 found for the time spent per error. The tester
using the SQLAB test tools observed that many of SQLAB's diagnostics
and warnings indicated violations of programming standards which did
not affect the computation and hence were not counted as errors. Each
warning had to be checked out, however, which may account for some of

the differences in performance.

6~11

The activity reports which were prepared by both testers indi-
cated that the tester using the compiler's debugging facilities was
better able to discern the effects due to different errors in the pro-
gram. He was, therefore, able to isolate problems, focus his attention,
and find errors more quickly. His approach was to work on finding the
cause of the first discrepancy which appeared in the output. The rest
of the output was disregarded because it contained symptoms of other

errors which would not help locate the first error.

The other tester, using the SQLAB test tools, spent a considerable
amount of time studying the reports generated by the tools and checking
out the reported errors and warnings. The test program contained many
violations of modern programming standards and practices which SQLAB
faithfully reported. Only four of the 22 seeded errors were found by
SQLAB's static analysis, yet the static analysis reports contain 51
unrelated error and warning messages. Most of the warnings were mixed-
mode Holerith expressions, and the error messages flagged "uninitial-
ized" variables that had been set via their equivalenced names. This
aspect of SQLAB's reports indicates the importance of using them during
program development to enforce good programming practices. The tester
was also misled by a modification which cleared several error symptoms
but did not correct the error. The modification created a more subtle
"double error" in a section of the program which was thought to be

working correctly.

The engineering time spent by the two multi-error testers is pre-
sented in another form in Fig. 6.5. In this figure the horizontal
axis represents the time spent by the SQLAB based tester and the ver-
tical axis represents the time spent by the compiler based tester. The
scale represents the rank order of the engineering times recorded in

Table 6.1. Errors which required more time have higher rank.

6-12

RANK OF ENGINEERING TIME -- COMPILER-BASED TESTER

NOT £032 £085 X
FOUNiJ> B400 G100
—————-—__N\
i ™~ E076
N B300
L \ E070
\ H200
= E089
‘ B500
% E007
A100
| E036
D400
L E002
L D900
- E001
B500
8_
E009 l £028
| H300 I F700
e E047
6 D200
& E067
G200
4
~ E015 E014
L B300 £608
il £069
D200
L £072
W200 |
| | | | | | | | | | TV J
2 4 6 8 10 NOT
FOUND

RANK OF ENGINEERING TIME --SQLAB-BASED TESTER

* ALL ERRORS NOT FOUND BY EITHER TESTER

Figure 6.5. Multi-Error Experiment Engineering

Time Resources

6-13

The first observation which one can make is that the errors de-
tected by the SQLAB-based tester using static analysis required rela-
tively little time to identify and correct. This confirms the expected
utility of static testing for a subset of the errors encountered and is
perhaps not too surprising. Error E085 was well-camouflaged by other
warnings as described earlier and the diagnostics for error E028 were

somewhat misleading. The effects are clearly displayed in Fig. 6.5.

The data from the nine errors that were found by both testers can
be further analyzed as samples of the error detection and correction
process. Two simple non-parametric statistical tests were applied to
this data. The Wilcoxon two-sample test for unpaired samples showed
no significant difference in the engineering time expended by the two
testers on these errors. The Spearman rank correlation was also com-
puted from this data and was found to be quite small (r=-.208). The
significance of this result is unknown and no explanation has been

found.

6.2.3 Examples of Errors Not Found

At the conclusion of the multiple error experiment, five errors
had not been found by either of the two testers. The SQLAB-based
tester estimated there were considerably more errors left than the 11
she had found. The compiler-based tester knew there was at least one

more error but thought it was probably the last.

The three errors in the "computational errors' category proved to
be the most difficult to find. This might have been expected since
neither tester was very familiar with formulas for missile flight,
elliptic orbits, or coordinate transformations in three dimensions.
Error number EO0O07 was the only error in this category found by both
testers. It was one of the last errors found and required more than

average time to discover.

6-14

et ———— — e R g T e e i - ——e = . ~

Error number E008 was very similar in form to error E007 but was
not found by either tester. For error EQ08 an intermediate result in
the calculation of the Euler angles for an orbit was calculated using
the wrong operand in the equation [(cos(B) instead of sin(R)]. A
major contributing factor to the difficulty with this error was that
the correct values for the computed Euler angles were not available to
the testers. Only after many steps of intervening computations were

the effects of this error finally exposed.

Unit testing of the module containing error E008 would have
readily shown the existence of an error. It is believed, however, that
this error would have been difficult to isolate and correct even if the

search was restricted to the program module containing the error.

Error number E018 was the third error in the "computational' cate-
gory and represented the sub-category '"Incorrect use of parenthesis"
(A200). The calculation of the length of the major axis of an elliptic

orbit was changed from
A=GCON*ADIV (R, (2.*GCON-R* (VR**2+4+VQ**2)))

to

A=GCON*ADIV (R, (2.*GCON-R* (VR+VQ) **2))

Several additional orbital parameters were then computed using the value
of A. As with error E008, the correct values of the orbital parameters
were not available to the testers and the effects were not evident until
some time later. It should be noted that the tester in the single-

error experiment also failed to find this error.

Only one error in the '"logic error" category was missed by both
testers. This was error number E013 in which the wrong statement label
was assigned to a program variable thus causing a control flow error.
The "assigned GOTO" is one of FORTRAN's more baroque features and it

was used extensively in the module containing this error. In fact,

6-15

o — o g o e e < RS, e e

the control flow in this module was so complex that SQLAB's restruc-
turing capability failed to sort it out. SQLAB's restructuring capa-
bility is used to convert unstructured code into structured code auto-
matically but in this case it failed to complete the analysis of all

the possible paths within this module.

Error number EO78 was intended to simulate a database error,
""data units incorrect" (H300). The seeded error also looks like an
"incorrect operand in equation'" (A100), a computational error, although
it does exhibit units problems. In the calculation of the position,
velocity, and acceleration of an object in orbit the intermediate

result
Q=2.*ATAN2(X1,X2)
was changed to

Q=TWOPI*ATAN2 (X1,X2)

where TWOPI was a variable initialized to 6.2832 (radians). The func-
tion ATAN2 (arctangent) returns an angle also with units of radians.
Hence the value computed for Q, which is an angular displacement, would
have incorrect units of radians-squared. Neither of the multiple error
testers discovered this error. The single error tester found the

offending statement but was unable to synthesize the correction.

6-16

B P — SR e —

. N R e —————

7 CONCLUSIONS

This project provided the opportunity for a critical and objective
assessment of the only two automated testing techniques that are mature
enough to be useful, path testing and static analysis. There are two
unique aspects of this project that distinguish the results from

similar software testing evaluation experiments.

13 The test engineers did not know the type

or location of the program errors.

2. An automated test tool was used for error

detection.

Experience has shown us that a simulated tool evaluation of a particular
testing technique based on knowing the type and location of an error
does not address many of the difficulties faced by using a real tool

and not knowing anything about the error(s). Because software normally
contains numerous peculiarities of design or implementation, what
constitutes an error may not be obvious. Furthermore, automated test
tools (like compilers) are unforgiving in their consistence checking.
Static analysis is particularly affected by this characteristic. For

a single, erroneous mixed mode expression, there may be hundreds of
correct, intentional ones, yet the static analyzer will faithfully

report all inconsistencies.

Similarly, while executing a particular path might cause an error
to manifest itself in the output, doing so may cause many other paths to

be executed, perhaps completely masking the error. This problem becomes

acute when the output-producing code is distant from the source of error.

If the error location is known from the start, it may be a simple matter

to determine the effectiveness of a particular testing technique.
While the individual characteristics of the test tool used in the

experiments undoubtedly played a part in the results, the primary

testing effectiveness, we feel, is due to the two techniques used.

7-1

e e kT -—— — i s —

For example, the DAVE system, a static analyzer, was found to detect
one class of errors (too many/too few statements in a loop: B500)

but unable to detect others (such as missing logic or condition tests:
B400). Similarly, the path testing tool used in the experiments, SQLAB,
did not provide the valuable dynamic tracing information provided by
other path-testing tools such as the JOVIAL Automated Verification
System (JAVS).l However, we believe that the data generated in the
experiments provide a good foundation for some conclusions about the

testing methods.

As described in earlier sections, for these experiments an error
is incorrect implementation of a specification or reliance on a compi-
ler's, operating system's, or machine's nonstandard capability. Examples
of "nonstandard" capabilities are assuming storage is preset to zero or
assuming arrays adjacently declared necessarily share contiguous storage
space. The "nonstandard" type of errors were removed from the test
object before starting the experiment, in order to not make the test
analyst's task of finding seeded errors even harder. This removal did
not, however, eliminate the error and warning messages described in
See. 6.2.2.

In addition, errors derived during the error-seeding process that,
though the site was executed, did not manifest themselves in the out-
put, were not sown in the program for subsequent detection. This was
done because, owing to the lack of program specification, a listing of
the correct program's output was used as the only specification. Al-
though 22 errors (25% of the total errors generated by the error-

seeding process) whose sites were executed were not used during the

lC. Gannon and N. B. Brooks, JAVS Technical Report, Vol. 1: User's
Guide, General Research Corporation CR-1-722/1, June 1978.

experiments, their existence is the basis for one major conclusion

of this evaluation: Errors may reside on paths and statements that,
although executed, may not show up in the output for the test data
used. Thus testing must face the issue that more information must be
supplied in a program during development (at, undoubtedly, greater
programmer effort) to (1) direct testing of legal sequence of paths,

and (2) specify functional correctness of statements and paths.

1.1 EFFECTIVENESS FOR ERROR DETECTION

When an error is known to exist, as in the error-type detection
experiment (Phase 2--single-error experiment), it was found that 40 per-
cent of the errors were readily found by inspection, 45 percent more
were found using path-testing assistance, and the remaining 15 percent
were not found or were improperly corrected. The errors found using
path testing were significantly more difficult than those found by
inspection, although no quantitative measure can be given for "diffi-
culty.”" The average time spent on errors found by inspection was one
hour, whereas for the more difficult errors found by path testing the

average time was three hours.

Path-testing tools do not generate error messages indicating the
source of an error in a program. They do, however, provide a great
deal of assistance by narrowing the scope of the search for errors and
reducing the number of possible error sites which must be investigated.

Hence, path testing is really enhanced inspection. The enhancement

increases the probability of finding an error by inspection from 40 to

80 percent.

Path sequence information was found (by the tracing capability of

the compiler used in Phase 3--multi-error experiment to be more

valuable for finding errors than path coverage information. The major

drawback of typical path tracing techniques is the volume of rather

useless output surrounding usually one or two lines indicating

incorrect behavior. An improvement which could be supported by a test
tool would be a condensed report which would retain the valuable se-
quence information. We feel that research should be directed toward
determining what a "valuable" sequence is. Of special consideration
are sequences which are functionally important and those which lead up

to or include threshold or boundary conditions.

Path testing was found to be helpful in all error categories.
There are examples of errors in each category which required the use of
path coverage information to discover the source of the trouble. How-
ever, seven of the nine errors not found in the error type detection
experiment were from the '"computational,'" "logic," and '"database"

categories, indicating some weakness of path testing in these areas.

Static analysis is credited with finding nine of the 49 errors
used in the error-type detection experiment--one of which was not found
by the path testing analyst. The economy of static analysis is shown by
the cost of its use (two engineering hours and 24 computer seconds)
compared with the path testing cost for the same errors of 13.5 en-
gineering hours and 110 computer seconds. Even though only one of the
errors generally more difficult to diagnose was found using static
analysis, it is an effective tool for screening some errors. It has
the advantage of generating diagnostic messages about errors at their
statement location, and it does not depend on any knowledge of error

manifestation.

162 EFFECTIVENESS FOR VERIFICATION

Path testing provides little support for determining the correct-
ness of programs, even through exhaustive path coverage. The correct
functioning of a program has to be checked by other means. The primary
function provided by path coverage is an indication of parts of a pro-
gram which have not been exercised. Full path coverage does not ensure

complete or sufficient testing, since errors may occur on sequences of

7-4

S — . T P Og— - - - e - -

paths which have not been tested. Furthermore, path testing and static
analysis are not capable of evaluating functional correctness unless

test data are derived from the software specification.

Even with these limitations in mind, there appears to be consid-
erable room for improvement in path-oriented verification tools. The
missing ingredient seems to be a specification of the legal path se-
quences which a program should be allowed to traverse. The combina-
torial nature of this problem makes it intractable for even small pro-
grams. Approximations or heuristic algorithms, however, may yield

acceptable solutions for many real programs.

Hamlet1 describes a promising approach of using 'computational
specifications'" to complement the standard use of "functional specifi-
cations" for programs. Computational specifications impose additional
constraints on how results are to be obtained. Functional testing can
be performed only on a small subset of the input domain. However, if
correct results are obtained using the prescribed computation, then the
small sample tests can be shown to be reliable. We expect that path
sequence information will be a major component in such computational

specifications.

7.3 VALUE OF ERROR SEEDING

The primary advantage of seeding errors for experiments is the
control it provides over the types and distribution of errors in a pro-
gram. Programs with authentic errors which satisfy requirements for
testing experimental hypotheses are simply not available on demand.
This control, we feel, is more important than the true authenticity of

the errors.

1R. G. Hamlet, "Critique of Reliability Theory," Workshop Digest,

Workshop on Software Testing and Test Documentation, Ft. Lauderdale,
Florida, December 1978.

/=5

The three testers involved in the error type detection and testing
technique evaluation experiments in this study agreed that the seeded
errors were very realistic. They did not feel that the environment was
at all artificial or contrived. This was probably due to the care
taken in error selection and seeding. It also indicates that the re-
sults of the experiments apply directly to real programs with authentic

errors.

One of the factors that was not controlled in our experiments was
the subtlety of the seeded errors and, hence, the difficulty of the
discovery. Defining subtlety may not be easy. In general, the most
difficult errors to discover were those which propagated incorrect
results through long sequences of computations with no outward sign of
trouble. When the symptom finally surfaced, the link back to the
originating error was completely obscured. Using degree of obscurity
as a measure of subtlety, one could construct a test program seeded with
easy errors, difficult errors, or some combination to test an hypotheses

about the effectiveness of a particular test tool or method.

An analogy can be drawn between testing software and other
scientific investigations. Error-seeding experiments correspond to
laboratory experiments where conditions can be controlled and many para-
meters can be measured. Production programs in actual use correspond
to field studies where the conditions cannot be controlled and some
measurements cannot be made. The analogy extends to the need for rele-
vancy between error-seeding experiments and delivered software just as
the need exists for relevance between laboratory experiments and field
studies. We highly recommend the practice of error-seeding to software

testing and verification tool developers as a measure of effectiveness.

7-6

APPENDIX A

Small Programs for

Preliminary Analysis

AD=AO71 050 GENERAL RESEARCH CORP SANTA BARBARA CA SYSTEMS TECHNO=-ETC F/@ 9/2
AN zxmmzum. EVALUATION OF SOFTWARE TESTING. (U)
MAY 79 C GANNON: R N MEESON: N B BROOKS nmo-n-c-oma
UNCLASSIFIED SRC=CR=1-854 AFOSR=TR=79=0733

FEFFEEER

Fr
¢
rr

I

22 i<

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

acan

10

c
100
110
120
130

oanOO0OnN

20
30

PROGRAM SINEFCN (INPUT,.OUTPUTTAPES=INPUTTAPE6=0UTPUTTAPEL2)

ORIVER PROGRAM 70 TEST THE DOUBLE PRECISION SINE FUNCTIUN
REG MEESON 7/711/78

DOUBLE PRECISION SINe DSIN, DBLE+ REF, VALs E
REAL X

WR1TE(6+100)

READ (5+110) X+ E
WRITE(64120) Xy E

IF(E £, 0,) STCP
REF = DSIN(DBLE(Xx))
VAL = SIN(X+E)
WRITE(6+¢130) REF. VAL
GOTO 10

FORMAT(26H SINE FUNCTICN TEST DRIVER // »
FORMAT(F10e4+ C10.2)

FORMAT(3H X=¢ F10,4%¢ 7H E=y D20,12)
FORMAT(1H+s 45X. 4HREF=, D20+12y 9H VAL=, D20.12)
END

DOUBLE PRECISION FUNCTICN SIN(X4E)

SQURCE= KERNIGHAN ANDO PLAUGER
THE ELEMENTS CF PROGRAMMING STYLE
PAGE 77.

THIS DECLARATION CCMPUTES SIN(X) TO ACCURACLY E
DOUBLE PRECISION E¢TERM¢SUM
REAL X

TERM=X

DO 20 I=3+100+2
TERM=TERM*X*x%2/(Ix(1=1))
IF(TERM.LT.E)GC TO 30
SUM=SUM+ (=1%%(1/2))%TERN
CONTINUE

SIN=SUNM

RETURN

END

05236 1.000-08
3,14159 1.000-08

..1
0,

1,000~08
0,000+00

LLL T P LT L LT T LT T T P TR ey e P T P P L D T P L Tl

OO0

20

PROGRAM CURRENT .(INPUT,QUTPUT,TAPES=INPUT «TAPE6=0UTPUT «TAPE22)
CURRENT COMPUTING PROGRAM

SOURCE= KERNIGHAN AND PLAUGER
THE ELEMENTS OF PRCGRAMMING STYLE
PAGE 79,

INPUT VALUES FCR RESISTANCEs FREQUENCY AND INDUCTANCE

REAC(S¢20) RoF oL

FORMAT(2F10.4)

PRINT VALULS OF RESISTANCE. FREQUENCY AND INOuCyanCE

WRITE(6+¢30) ReF oL

FORMAT(SHLIR=(FlU 4 el4H F=eFlU4 44 L=oFly4)

INPUT STARTING AND TERMINATING VALUES OF CAPACITANCE,AND INCREMENTY

A-2

——

a

READ(S+40) SCeTC,CI
40 FORMAT(3F10.6)

c SET CAPACITANCE TG STARTING VALUE
C=SC

c SET VOLTAGE YO STARTING VALUE
v=1.0

c PRINT VALUE OF VOLTAGE

50 WRITE(6460) v
60 FORMAT(3HOV=,FS,0)

c COMPUTE CURRENT Al
TO AI = E 7/ SCRT(R%82 ¢+ (6.20322F%L « 1,0/(6.,2832%F%C))2s2)
c PRINT VALULS QF CAPACITANCE AND CURRENT

WRITE(6480) CoAI
80 FORMAT(3HOCS F7.5.4H I=,F7.5)

c INCREASE VALUE (F CAPACITANCE
C=C 4+ C1
IF (C LLE. TC) GO 70 70
o INCREASE VALUE COF VOLTAGE
V==Vs+1,0
c STOP IF VOLTAGE IS GREATER THAN 3,0
IF (V (LE, 3.0) GO TO S0
STOP
END
-
10, «159 10,
.08 012 +01

PROGRAM NUNALPH (INPUT QUTPUTTAPES=INPUT TAPE6=OLTPLT+TAPEL2)

C

c A PROGRAM WITH A SUBTLE INITIALIZATICN ERROR

c

c SOQURCE= KERNIGHAN AND FLAUGER

c THE ELEMENTS CF PROGRAMMING STYLE

C PAGE 80,

C

(5 AUGMENTED 10O PRODUCE SOME OUTPUT 7711778 REG PEESCN
c

DIMENSION NUM(80) +NALPHA(80)
DATA NBLANK /1H / L
READ (5+101) NALPHA«NUM
101 FORNMAT (80AY,T1,p0011)
WRITE(64102) NALPHA+ NUNM :
102 FORMAT(11H INPUT DATA 7 1HO,80A1 /7 1H +8011)
NUM = 0
N=0
DO 30 I = 1480
IF (NALPHA(I) .EQe. NBLANK) GO TO 30
N=N+213
NSUM = NSUM + NUM(I)
30 CONTINUE
WRITE(64103) Ne¢ NSUM
103 FORMAT(30HUTHE NUMBER CF DIGITS FOUNC 1S, 13 /

s 29H ANC THE SUM OF THE DIGITS ISy 14)

| sToP

5 END

% 3 55 127 3467 124689

| 12345 13579 2468101214 16 18 20 s 10 15 20 25 3

| .

; .--...-.---.-.---....-.-.---..........-.--...-.-.-.--...---.---.-.---.--

| A-3 |

| |
!

] ——— — ——

- st bomss st s v aeni B a e e

O OO0 OOO0O0

PROGRAM BALANCE (INPUT CUTPUT TAPES=INPUT«TAPEA=0UTPLT s TAPE12)

COMPUTES A TABLE UF MONTHLY BALANCES AND INTEREST CHARGES FOR
A GIVEN PRINCIPAL AMOUNT, INTEREST RATEs AND MONTHLY FAYMENT.

SOURCE= KERNIGHAN AND PLAUGER
THE ELEMENTS QOF PRGRAMMING STYLE
PAGE 85,

CONVERTED TO FOKRTRAN /711778 REG MEESON
REAL Ay Re M¢ Be Co P

10 RCAD (S+101) Ay Re M
101 FORMAT(3F10.4)

WRITE(64102) Ay Ry M
102 FORMAT(14H THE AMUUNT 1S.F10.2, .

$ 23H THE INTEREST RATE IS F6.2,

3 25H THE MCNTHLY PAYMENT ISF8.2)

IF (M JLE. AxR/1200.) G0 TO 30

WRITE(6,103)
103 FORMAT(iHe=y

$S59H MONTH BALANCE CHARGE PAID ON PRINCIPAL /7)

B=A i

Cc 18 1=1460

C=B*R/1200.

IF (B4C ,LT. M) GO TO 20

pP=r=C

B=B-P
18 WRITE(6,181) I. By Cy P
181 FORMAT (I13+ 3F13.2)
20 BpLUSC = g+C

WRITE(6+201) BPLUSC
201 FORMAY (3SHOTHERE WILL EE A LAST PAYMENT OF v FB.2)

60 7O 10
30 WRITE(64301)
301 FORMAY (30HOUNNACCEPTABLE MONTHLY PAYMENT)

60 TO 10

END
500. 1‘. ~50
100, 9 17,
1200, 1%, 12,

PROGRAM BINSRCH (INPUTQUTPUT,TAPEL2)

4
c BINARY SEARCH PROCEDURE YO FIND AN ELEMENT #As IN A TABLE =x»
c THE ELEMENTS IN sX® MUST ALREADY BE SCRTED INTO INCREASING ORDER
c
c SOURCE= KERNIGHAN AND PLAUGER
c THE ELEMENTS OF PROGRAMMING STYLE
c PAGE 87.
c
DIVENSION x(200),Y(200)
READ S0, N
50 FORMAT(IS)
2 READ 514 (X(K)es Y(K)y K = 1¢ N)
81 FORMATY (2F10,5)
READ 52+A
82 FORMAT (F10,5%)
IF (X(1)=A)l41¢ 414 11
81 IF(A=XIN))Se Se 11
11 PRINT S53.A
A-4
— —

53 FORMATI1H +F10.5,
1 26H IS NOT IN RANGE OF TABLE,)
ST0P
S Low =1
IHIGH = N
6 IF (IHIGH=LOW=1)7+¢ 12¢ 7
12 PRINT S44 XLOWs YLOWs Ay XHIGH, YHIGH
54 FORMAT(1H SF10.5)
STUP
7 MID = (LOW + IHIGH)/Z2
IF (A<X(MIC))9: 94 10
9 1HIGH = MID

60 TO &6
10 LCcw = MID
Go T0 6
END
7
=3.2 1,
el 2,
1.3 3.
8.7 LN
20'5 5.
2208 6.
697.4 T,

b)
PROGRAM INTEGR8 (OUTPUT,TAPE2=QUTPUT.TAPE12)
INTEGRATES A POLYNOMIAL BY TRAPEZ0IDAL APPROXIMATICN
SOURCE= KERNIGHAN ARC PLAUGER

THE ELEMENTS CF PROGRAMMING STYLE
PAGE 91,

OOO0OOMNN

AREA=0.
X =1,
DELTX=0,1
9 YaX&2242 ,%X+3,
X=X+DELTX
YPLUS=X*%242 ,%X+3,
10 AREA=ARCA+(YPLUS+Y)/2.3CELTX
. JF{X=10,)9+15415
15 WRITE(24+7)AREA
? FORMAT(EZ0Q.8)
st0P
END

PROGR&N FLOATPT (INPUT.OQUTPUTTAPE1=QUTPUT
TAPE2=INPUT+TAPE3=0UTPUT «TAPEL2)

TESTS FOR EXACT EQUALITY BETWEEN COMPUTED FLOATING POINT NUMBERS

SOURCE= KERNIGHAN AND PLAUGER
THE ELEMENTS CF PROGRAMMING STYLE
PAGE 93,

RIGHT TRIANGLES
LOGICAL KIGHT« DATA
DO 1 K = 14100

OO0 O00

10
11
12

£

b Y
Se
Se
o0
%)
0.

READ (2,10) Ay B, C
CHECK FOR NEGATIVE CR ZERO DATA

DATA = AsGTe0e¢ ¢ANCoe B.GTeOes «ANDe C.GT.0.
IF(«NOT.DATA) GO TO 2
CHECK FOR RACHY TRIANGLE CONDITION

A = Axx2

B = Bxx2

C = Cxx2

RIGHT = AEQ.B+C OR. B+EG.A+C ,0Rs C.EQ.A4B
WRITE(3¢11) Ks RIGHT

CALL EXIT

RRCR MESSAGE

WRITE(1412)

stoP

FORMAT(3F10.4)

FORMAT(]64L12)

FORMAT (11 LATA ERROR)

END 7
2¢ e
12, 13,
L 1) Se

5 012 13
ot 5 s
0. 0.

OO0 NN

10

PROGRAM AREATRY (INPUT CUTPUT.TAPE2=INPUTTAPE3=OUTPLTTAPE12)
FIRST ATTEVPT FOR APPROXIMATING AREA UNDER A CURVE

SOURCE= KERNIGHAN ANC PLAUGER
THE ELEMENTS CF PROGRAMMING STYLE

PAGE 96+
AREA=0.0
READ(2410)T
FORMAT(F10.4)
H=0.1
200
XN==X

AREASAREA4 (6,02 (2,0*%%XN)46¢02(2,0%*(XN=H)))%0,1/240
X=X+H ;
IF(X*T)2:6+4S

WRITE(3¢33)AREA

FORMAT(TH AREA =4F8.5)

G0 10 1

CALL EXIT

END

r—

|
w
H

APPENDIX B

Chronological List of Submitted Papers

B-1

The following collection of abstracts, papers and documents
was supported by AFOSR F49620-78-C-0103.

) I C. Gannon and R. N. Meeson, "An Empirical Evaluation of Static
Analysis and Path Testing,'" abstract submitted (Jan. 1978) to the
Computers in Aerospace Conference II in Los Angeles, California,
October 1979.

2e C. Gannon, Empirical Results of Static Analysis and Path Testing
of Small Programs, General Research Corporation RM-2225, March
1979.

3. C. Gannon, "Error Detection Using Path Testing and Static Analysis,"
paper submitted to Computer magazine of the IEEE Society (March
1979).

4. C. Gannon, N. B. Brooks, and R. N. Meeson, An Experimental

Evaluation of Software Testing, Final Report, General Research
Corporation CR-1-854, May 1979.

Se C. Gannon and R. N. Meeson, "Implications for Test Tool Improve-
ment," to be submitted to COMPSAC 79, the IEEE Computer Society's
Third International Computer Software and Applications Conference,
Chicago, 1979.

B-2

APPENDIX C

Personnel Associated with the Project

et

The following personnel were contributors to the research effort

and set of experiments:

Dorothy Andrews, MSEE, University of California, Santa

Barbara

Jeoffrey P. Benson, PhD, University of Californis, Santa

Barbara

Nancy B. Brooks, MS, University of Illinois

Carolyn Gannon, MSEE, University of California, Santa

Barbara

Reginald N. Meeson, MSEE, PhD candidate, University of

California, Santa Barbara

Sabina H. Sajb, PhD, University of California, Los Angeles

Badain

1.

10.

11.

12.

13.

14.

15.

Bibliography

B. W. Boehm, "Software Engineering: R & D Trends and Defense Needs,"
Proceedings of the Conference on Research Directions in Software
Technology, October 1977, cited on p. 1-2.

D. J. Reiffer and R. L. Ettenger, '"Test Tools: Are They a Cure-Al1?"
Proceedings of the 1975 Annual Reliability and Maintenance Sym-
posium, IEEE 75CH0918-3ROC, January 1975, cited on p. 1-2.

J. B. Goodenough, "A Survey of Program Testing Issues,'" Proceedings
of the Conference on Research Directions in Software Technology,
October 1977, cited on pp. 1-2, 1-3.

W. C. Hetzel, An Experimental Analysis of Program Verification
Methods, Thesis, University of North Carolina, Chapel Hill, N. C.,
1976, cited on p. 1-3.

C. Gannon, "A Verification Case Study,'" Proceedings of AIAA
Computers in Aerospace Conference, Los Angeles, November 1977,
cited on pp. 1-3, 6-3.

W. E. Howden, '"Symbolic Testing and the DISSECT Symbolic Evalua-
tion System," Computer Science Technical Report II, University of
California, San Diego, May 1976, cited on pp. 1-3, 1-4.

W. E. Howden, "Theoretical and Empirical Studies in Program Testing,"
IEEE Transactions on Software Engineering, Vol. SE-4, No. 4, July
1978, cited on p. 1-3.

E. R. Mangold, "Software Error Analysis and Software Policy Impli-
cations," IEEE EASCON, 1974, pp. 123-127, cited on p. 1-3.

B. W. Kernighan and P. J. Plauger, The Elements of Programming
Style, McGraw-Hill, 1974, cited on pp. 1-4, 2-1.

R. E. Fairley, "Tutorial: Static Analysis and Dynamic Testing of
Computer Software," Computer, April 1978, cited on p. 1-4.

D. M. Andrews and J. P. Benson, Software Quality Laboratory User's
Manual, General Research Corporation CR-4-770, May 1978,
cited on p. 1-5.

L. D. Fosdick and C. Miesse, The DAVE System User's Manual, Univ-
ersity of Colorado, CU-CS-106-77, March 1977, cited on p. 1-5.

T. Plambeck, The Compleat Traidsman, General Research Corporation,
IM 711/2, September 1969, cited on p. 3-1.

T. A. Thayer, et al., Software Reliability Study, TRW Defense and
Space Systems Group, RADC-TR-76-238, Redondo Beach, California,
August 1976, cited on p. 4-1.

M. J. Fries, Software Error Data Acquisition, Boeing Aerospace
Company, RADC-TR-77-130, Seattle, Washington, April 1977, cited
on p. 4-1.

16.

17.

18.

19.

20.

Bibliography, cont.

Verification and Validation for Terminal Defense Program Soft-
ware: The Development of a Software Error Theory to Classify
and Detect Software Errors, Logicon HR-74012, May 1974,

cited on p. 4-1.

H. Sackmann, Man-Computer Problem Solving: Experimental Evaluation
of the Time-Sharing and Batch Processing, Petrocelli Books, 1978,
cited on p. 6-5.

G. J. Myers, "A Controlled Experiment in Program Testing and Code
Walkthrough/Inspections," CACM, Vol. 21, No. 9, Sept. 1978, cited
on p. 6-5.

C. Gannon and N. B. Brooks, JAVS Technical Report, Vol 1: User's
Guide, General Research Corporation CR-1-722/1, June 1978,
cited on pp, 3-6, 7-2.

R. G. Hamlet, '"Critique of Reliability Theory," Workshop Digest,
Workshop on Software Testing and Test Documentation, Ft.
Lauderdale, Florida, December 1978, cited on p. 7-5.

